Ii спортивная физиология является как учебной, так и научной дисциплиной - umotnas.ru o_O
Главная
Поиск по ключевым словам:
Похожие работы
Название работы Кол-во страниц Размер
К учебной дисциплине «Анатомия и физиология человека». Область применения... 1 57.73kb.
Учебной дисциплины «Математический анализ» для направления 010100. 1 75.48kb.
Программа элективного курса «Физиология человека» а ннотация Курс... 1 133.42kb.
Подготовка к коллоквиуму I. Коллоквиум: сущность и 1 34.43kb.
Рабочая программа дисциплины «Физиология человека» Специальность... 1 162.52kb.
Возрастная физиология и психофизиология 1 26.6kb.
Книга говорила Вне времени и вне границ. О, притягательная сила 1 57kb.
Образец оформления титульного листа 1 277.3kb.
Г. П. Щедровицкий 1 101.79kb.
Рабочая программа учебной дисциплины «Физиология высшей нервной деятельности... 3 597.16kb.
Вопросы к экзамену в летнюю экзаменационную сессию по дисциплине... 1 170.93kb.
Физиология человека и животных 1 23.32kb.
Викторина для любознательных: «Занимательная биология» 1 9.92kb.

Ii спортивная физиология является как учебной, так и научной дисциплиной - страница №3/7

Раздел II ЧАСТНАЯ СПОРТИВНАЯ ФИЗИОЛОГИЯ

К разделу частной спортивной физиологии, какуже указывалось выше, относятся физиологическая классификация физических уп­ражнений, характеристика двигательных качеств и навыков и осо­бенности функционального состояния и работоспособности лиц раз­ного возраста и пола в особых условиях внешней среды. Важной фи -зиологической особенностью этого раздела является также, рассмот­рение механизмов и закономерностей функционирования организма при специфической профессиональной деятельности спортсменов с учетом ихтренированности и генетической обуслов­ленности.


8. ФИЗИОЛОГИЧЕСКАЯ КЛАССИФИКАЦИЯ И ХАРАКТЕРИСТИКА ФИЗИЧЕСКИХ УПРАЖНЕНИЙ

Физические упражнения — это двигательная деятельность, с по­мощью которой решаются задачи физического воспитания — обра­зовательная, воспитательная и оздоровительная.

Физические упражнения чрезвычайно многообразны. Для их классификации невозможно применить один единственный крите­рий. Этим объясняется наличие различных систем физиологической классификации по разным критериям, положенным в их основу.
8.1. РАЗЛИЧНЫЕ КРИТЕРИИ КЛАССИФИКАЦИИ УПРАЖНЕНИЙ

В связи с многообразием физических упражнений, различными их формами и физиологическими механизмами в основу классифи­кации положены различные критерии. Среди них различают следу­ющие основные критерии.

Энергетические критерии — классифицирующие упражнения по преобладающим источникам энергии (аэробные и анаэробные) и по уровню энерготрат (единичным — ккал в I с) и суммарные, на всю выполненную работу).

Биомеханические — выделяющие по структуре движений упражнения циклические, ациклические и смешанные.

Критерии ведущего физического качества — упражнения силовые, скоростные, скоростно-силовые, упражнения на выносливость, координационные или сложно-технические.

Критерии предельного времени работы — подразделяющие упражнения по зонам относительной мощности.

Предлагали также классифицировать упражнения по отношению мощности энерготрат к основному обмену (SeligerV., 1972); учиты­вали взаимодействие со спортивным снарядом и человека с челове­ком (Фомин В. С, 1985); классифицировали виды спорта по соотно­шению интенсивности статической и динамической работы и степени опасности для здоровья (Mitchell at all., 1985). Выделяли также 2 груп­пы спортивных упражнений: 1) связанные с предельными физичес­кими нагрузками и развитием физических качеств и 2) технические, требующие специальных психофизиологических качеств — автомо­тоспорт, санный, парусный, парашютный, конный спорт, дельтапла­неризм и др. (Коц Я. М. 1986). Существует также ряд педагогических классификаций упражнений, которые здесь не рассматриваются.

Классификация по энергетическим критериям рассматривает подразделение спортивных упражнений по преобладающему источ­нику энергии: анаэробные алактатные (осуществляемые за счет энергии фосфагенной системы — АТФ и КрФ), анаэробные лактат-ные (за счет энергии гликолиза — распада углеводов с образованием молочной кислоты) и аэробные (за счет энергии окисления углево­дов и жиров). Соотношение аэробных и анаэробных источников энергии зависит от длительности работы (табл. 11).

Таблица 11

Соотношение анаэробных и аэробных источников энергии (%) при различной длительности физических упражнений

(по: P. Astrand et al., 1970; И. В. Дулик, 1979)


Путь

Продолжительность работы

энерго-продукции

Юс

1 мин

2 мин

4 мин

10 мин

30 мин

1 час

2 часа

Анаэробный Аэробный

85 15

70 30

50 50

30 70

10 90

5 95

2 98

1 99

При классификации по уровню энерготрат выделяют упражне­ния по величине суммарных и единичных затрат энергии. С увеличе­нием длины дистанции суммарные энерготраты растут, а единичные снижаются.
8.2. СОВРЕМЕННАЯ КЛАССИФИКАЦИЯ ФИЗИЧЕСКИХ УПРАЖНЕНИЙ

Общепринятой в настоящее время считается классификация физических упражнений, предложенная В. С. Фарфелем (1970). В этой системе в силу многообразия и разнохарактерности физических упражнений применены различные критерии классификации (см. схему классификации).

Схема физиологической классификации упражнений в спорте

(по В. С. Фарфелю, 1970) ПОЗЫ

Лежание

Сидение


Стояние

Опора на руки


ДВИЖЕНИЯ

I. Стереотипные (стандартные) движения

Качественного значения (с оценкой в баллах)

Количественного значения (с оценкой в килограммах, метрах, секундах)


Циклические

По зонам мощности:

Максимальной

Субмаксимальной

Большой

Умеренной


Ациклические

Собственно-силовые

Скоростно-силовые

Прицельные

II. Ситуационные (нестандартные) движения

Спортивные игры

Единоборства

Кроссы


Все спортивные упражнения разделены первоначально на позы и движения. Затем все движения подразделены по критерию стандарт­ности на стандартные или стереотипные (с повторяющимся поряд­ком действий) и нестандартные или ситуационные (спортивные игры и единоборства). Стандартные движения разбиты на 2 группы по характеру оценки спортивного результата — на упражнения каче­ственного значения (с оценкой в баллах — гимнастика, фигурное ка­тание, прыжки в воду и др.) и количественного значения (с оценкой в килограммах, метрах, секундах). Из последних выделены упражне­ния с разной структурой — ациклические и циклические Среди ациклических упражнений выделены собственно-силовые (тяжелая атлетика), скоростно-силовые (прыжки, метания) и прицельные (стрельба).

Циклические упражнения по предельному времени работы разде­лены по зонам относительной мощности — максимальной мощности (продолжающиесядо 10-ЗОс), субмаксимальной (от 30-40 сдо 3-5 мин), большой (от 5-6 мин до 20-30 мин) и умеренной мощности (от 30-40 мин до нескольких часов). При этом учитывалось, что физи­ческая нагрузка не равна физиологической нагрузке на организм че­ловека, а основной величиной, характеризующей физиологическую нагрузку является предельное время выполнения работы. Анализ спортивных рекордов на различных дистанциях у бегунов, конько­бежцев, пловцов и др. позволил построить логарифмическую зави­симость между логарифмом интенсивности энерготрат (и соответ­ственно скорости прохождения дистанций) и логарифмом предель­ного времени работы. На графике этой зависимости выделились 4 различных участка: 1) с наивысшей скоростью (около Юме') — зона максимальной мощности; 2) со скоростью близкой к максимальной (с резким падением скорости в диапазоне от 10 до 7 м-с1) — зона субмаксимальной мощности; 3) с более медленным падением скорос­ти (7 — 6 мс1) и 4) зона с новым резким падением скорости (до 5 мчг1 и менее) — зона умеренной мощности.


8.3. ФИЗИОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА СПОРТИВНЫХ ПОЗ И СТАТИЧЕСКИХ НАГРУЗОК

Двигательная деятельность человека проявляется в поддержании позы и выполнении моторных актов.

Поза — это закрепление частей скелета в определенном положе­нии. При этом обеспечивается поддержание заданного угла или необ­ходимого напряжения мышц.

При сохранении позы скелетные мышцы осуществляют две фор­мы механической реакции — тонического напряжения (пока воз­можно достаточно стабильное сохранение позы) и фазных (тетани-ческих) сокращений (для коррекции позы при ее заметных отклоне­ниях от заданного положения и при большихусилиях).

Основные позы, которые сопровождают спортивную де­ятельность, — это лежание (плавание, стрельба), сидение (гребля, авто-, вело- и мотоспорт, конный спорт и др.), стояние (тяжелая атле­тика, борьба, бокс, фехтование и др.), с опорой на руки (висы, стой­ки, упоры). При лежании усилия мышц минимальны, сиде­ние требует напряжения мышц туловища и шеи, а стояние — из-за высокого положения общего центра масс и малой опоры — зна­чительных усилий антигравитационных мышц-разгибателей задней поверхности тела. Наиболее сложными являются позы с опо­рой на руки. В позах «вис» и «упор» координация менее слож­на, но требуются большие усилия мышц (например, упор руки в сто­рону на кольцах). Наибольшую сложность представляют стойки (на­пример, стойка на кистях). В этом случае требуется не только боль­шая сила мышц рук, но и хорошая координация при малой опоре и необычном положении вниз головой, которое вызывает у нетрени­рованных лиц значительный приток крови к голове и массивную аф­ферентную импульсацию от смещенных внутренних органов и от вестибулярного аппарата.

Правильная организация позы имеет большое значение для двига­тельной деятельности. Она является основой любого движения, обес­печивая опору работающим мышцам, выполняя фиксацию суставов в нужные моменты (например, при отталкивании ног от опоры при ходьбе). Закрепляя тело человека в вертикальном положении, она осуществляет антигравитационную функцию, помогая преодолеть силу земного притяжения и противодействуя падению. Поддержа­ние сложных поз (например, при выполнении на одной ноге высоко­го равновесия на полупальцах в художественной гимнастике) в не­подвижном положении или при движении обеспечивает сохранение равновесия тела.

Позы, как и движения, могут быть произвольными и непроизволь­ными. Произвольное управление позой осуществляется корой боль­ших полушарий. После автоматизации многие позные реакции мо­гут осуществляться непроизвольно, безучастия сознания. В органи­зации непроизвольных поз участвуют условные и безусловные реф­лексы. Специальные статические и статокинетические рефлексы поддержания позы (установочные рефлексы) происходят с участием продолговатого и среднего мозга.

Различают рабочую позу, обеспечивающую текущую де­ятельность, и предрабочую позу, котораянеобходимадля подготовки к предстоящему действию. Поза может быть удобной (и тогда работоспособность человека повышается) и неудобной, при ко­торой эффективность работы снижается. Например, при стендовой стрельбе в положении стоя опытные спортсмены так распределяют нагрузку на части скелета, что на ЭМ Г наблюдается минимальная активность мышц туловища. Это позволяет спортсменам длительное время стоять без утомления. В то же время у менее подготовленных стрелков при плохой организации позы имеется значительное на­пряжение мышц, что быстро приводит к утомлению и снижению точности стрельбы.

Работая в условиях неподвижной позы человек, выполняет ста­тическую работу. При этом его мышцы работают в изометри­ческом режиме и их механическая работа равна нулю, так как отсут­ствует перемещение тела или его частей, (поскольку А=Р-Н,аН = 0, то и А = 0). Однако с физиологической точки зрения человек испыты­вает определенную нагрузку, тратит на нее энергию, устает, и его ра­бота может оцениваться по длительности ее выполнения. В спорте, как правило, статическая работа связана с большим напряжением

мышц.


В центральной нервной системе (в первую очередь — в моторной области коры) при такой работе создается мощный очаг возбужде­ния —рабочая доминанта, которая оказывает тормозящее влия­ние на другие нервные центры, в частности на центры дыхания и сердечной деятельности. Так как при этом, в отличие от динамичес­кой работы, активность нервных центров должна поддерживаться непрерывно, без интервалов отдыха, то статические напряжения весьма утомительны и не могут поддерживаться длительное время. Специфические системы взаимосвязанной активности нервных центров проявляются в коре больших полушарий у спортсменов (по данным ЭЭГ) лишь при достаточных статических усилиях (напри­мер, у штангистов при подъеме штанги весом не менее 70-80% от максимальной произвольной силы), одновременно в мышцах в ре­акцию вовлекаются наименее возбудимые и мощные быстрые дви­гательные единицы. Этим объясняется необходимость включения в тренировочные занятия максимальных и околомаксимальных на­грузок.

В двигательном аппарате при статической работе наблюдается непрерывная активность мышц, что делает ее более утомительной, чем динамическая работа с той же нагрузкой.

Лишь при статических напряжениях, не превышающих 7-8-% от максимальных, кровоснабжение мышц обеспечивает необходимый кислородный запрос. При 20-процентных статических усилиях кро­воток через мышцу уменьшается в 5-6 раз, а при усилиях более 30% от максимальной произвольной силы — прекращается вовсе (рис. 29).

В настоящее время обнаружено, что артериальное давление в

мышцах при статической работе может достигать 400-500 мм рт.ст., так как это необходимо для преодоления периферического сопро­тивления кровотоку. Однако даже прекращение кровотока заметно не снижает работу мышц, так как в них имеются запасы кислорода и анаэробных источников энергии, а сама работа кратковременна.

Изменения вегетативных функций демонстрируют так называе­мый феномен статических усилий (или феномен Л индгарта- Вереща­гина): в момент выполнения работы уменьшаются ЖЕЛ, глубина и минутный объем дыхания, падает ЧСС и потребление кислорода, а после окончания работы наблюдается резкое повышение этих показа­телей. Этот эффект больше выражен у новичков, но по мере адаптации спортсменов к статической работе он проявляется гораздо меньше.

При статической работе содержание кислорода в альвеолах легких зависит от принятой позы: из-за ухудшения легочного кровотока и неравномерности вентиляции различных долей легких оно составля­ет в позе стояния — 14.9%, сидения— 14.4%, лежания — 14.1%.

При значительных усилиях наблюдается явление натужива-н и я, которое представляет собой выдох при закрытой голосовой щели, в результате чего туловище получает хорошую механическую опору, а сила скелетных мышц увеличивается.

Напряжение скелетных мышц при позно-тонических реакциях и статических усилиях оказывает в результате повышенной проприо-цептивной импульсации регулирующее влияние на вегетативные процессы — м о т о р н о-в исцеральные рефлексы (Могендович М. Р., 1972). Это, в частности, нарастание ЧСС (мо-торно-кардиальныерефлексы) и угнетение работы почек — уменьше­ние диуреза (моторно-ренальныерефлексы). Так, при положении вниз головой ЧСС составляет — 50, при лежании — 60, сидении — 70, стоянии — 75 уд • мин1, а количество мочи, образовавшейся за 1.5 часа, в позе лежания — 177 мл, а в позе стояния— 136 мл.
8.4. ФИЗИОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА СТАНДАРТНЫХ ЦИКЛИЧЕСКИХ И АЦИКЛИЧЕСКИХ ДВИЖЕНИЙ

Стандартные или стереотипные движения характеризуются сравнительным постоянством движений и их пос­ледовательностью, закрепляемой в виде двигательного динамическо­го стереотипа. По структуре движений различают циклические и ациклические стандартные движения.


8.4.1. СТАНДАРТНЫЕ ЦИКЛИЧЕСКИЕ ДВИЖЕНИЯ

Стандартные циклические упражнения отличаются повторением одних и тех же двигательных актов (1 —2—1 —2— 1 —2 и т. д.). По предельной длительности работы они подразделяются на 4 зоны относительной мощности — максимальную, субмаксималь­ную, большую и умеренную.

Работа максимальной мощности продолжается до 20-30 с (например, спринтерский бег на 60,100 и 200 м; плавание на 25 и 50 м; велогонки на треке — гиты на 200 и 500 м и т. п.).

Такая работа относится к анаэробным алактатным нагрузкам, т. е. выполняется на 90-95% за счет энергии фосфагенной системы — АТФ и КрФ. Единичные энерготраты — предельные и достигают 4 ккал с1, зато суммарные — минимальны (около 80 ккал). Огромный кислородный запрос (порядка 8 л или в пересчете на 1 мин ~ 40 л) во время работы удовлетворяется крайне незначительно (менее 0.1л), но кислородный долг не успевает достичь большой величины из-за кратковременности нагрузки. Короткий рабочий период недостато­чен для заметных сдвигов в системах дыхания и кровообращения. Однако, в силу высокого уровня предстартового возбуждения ЧСС достигает высокого значения — до 200 уд • мин1. В результате актив­ного выхода из печени углеводов в крови обнаруживается повышен­ное содержание глюкозы — гипергликемия.

Ведущими системами организма при работе в зоне максимальной мощности являются центральная нервная система и двигательный аппарат, так как требуется высокий уровень возбудимости и ла­бильности нервных центров и скелетных мышц, хорошая подвиж­ность нервных процессов, способность к быстрому расслаблению мышечных волокон и достаточные запасы в них креатинфосфата.

Работа субмаксимальной мощности продолжается от 20-30 с до 3-5 мин (например, бег на средние дистанции — 400,800, ЮООи 1500м; плавание надистанции 100,200 и 400 м; скоростной бег на коньках на 500,1000,1500 и 3000 м; велогонки — гиты на 1000м; гребля —500,1000 ми др.).

Сюда относятся нагрузки анаэробно-аэробного характера. С уве­личением дистанции скорость локомоций в этой зоне резко падает, и, соответственно, быстро снижаются единичные энерготраты (от 1.5 до 0.6 ккал с1), зато суммарные энерготраты возрастают (от 150 до 450 ккал). Покрытие энерготрат преимущественно за счет анаэроб­ных реакций гликолиза приводит к предельному нарастанию концен­трации лактата в крови (до 20-25 мМоль ■ л '), которая увеличивает­ся по сравнению с уровнем покоя в 25 раз. В этих условиях рНкрови снижается до 7.0 и менее. Длительность работы достаточна для максимального усиления функций дыхания и кровообращения, в резуль­тате достигается МПК. ЧСС находится на уровне 180уд • мин'. Не­смотря на это, потребление кислорода удовлетворяет надистанции лишь 1 /3 очень высокого кислородного запроса (на разных дистанци­ях от 2.5 до 8.5 л • мин'), а кислородный долг, составляющий 50-80% от запроса, возрастает у высококвалифицированных спортсменов до пре­дельной величины — порядка 20-22 л. В связи с этим стабилизация по­требления кислорода и показателей кардиореспираторной системы, достигаемая к концу дистанции, получила название кажущегося или ложного устойчивого состояния (рис. 30).

Ведущими физиологическими системами обеспечения работы в зоне субмаксимальной мощности являются кислородтранспортные системы — кровь, кровообращение и дыхание, а также центральная нервная система, роль которой очень велика, так как она должна управлять движениями, осуществляемыми с очень высокой скорос­тью, в условиях недостаточного кислородного снабжения самих не­рвных центров.

Работа большой мощности продолжается от 5-6 мин до 20-30 мин. Сюда относятся циклические упражнения с преодолени­ем длинных дистанций—бег на 3000,5000, 10000 м; плавание на 800, 1500 м; бег на коньках — 5000, 10000 м; лыжные гонки — 5, 10 км; гребля—1.5,2 км и др. Работа в этой зоне мощности характеризуется как аэробно-анаэробная. Особенное значение здесь, наряду с глико-литическим энергообразованием, имеют реакции окисления углеводов (глюкозы). Максимальное усиление функций кардиореспираторной си­стемы обеспечивает достижение организмом спортсмена МПК. Однако кислородный долг, составляя 10-30% от запроса, при большой длительности работы достигает к концу дистанции большой величины (12-15 л). Этим объясняется высокая концентрация лактата в крови (около ЮмМоль- л ~')и заметное снижение рНкрови

На протяжении дистанции наблюдается стабилизация показате­лей потребления кислорода, дыхания и кровообращения, хотя полного удовлетворения потребления кислорода во время работы не происходит, т. е. устанавливается кажущееся устойчивое состояние. ЧСС сохраняется достаточно постоянно на оптимальном рабочем уровне — 180 уд ■ мин!. Единичные энерготраты — невысоки (0.5-0.4 ккал ■ с1), но суммарные энерготраты достигают 750-900 ккал.

Ведущее значение в зоне большой мощности имеют функции кар-диореспираторной системы, а также системы терморегуляции и же­лез внутренней секреции.

Работа умеренной мощности продолжается от 30-40 мин до нескольких часов. Сюда входят сверхдлинные беговые дистан­ции — 20,30 км, марафон 42195 м, шоссейные велогонки— 100 км и более, лыжные гонки — 15, 30,50 км и более, спортивная ходьба на дистанциях от 10 до 50 км, гребля на байдарках и каноэ — 10000 м, сверхдлинные заплывы и пр.

Энергообеспечение осуществляется почти исключительно аэроб­ным путем, причем по мере расходования глюкозы происходит пере­ход на окисление жиров. Единичные энерготраты — незначительны (до 0.3 ккал • с1), зато суммарные энерготраты огромны—до 2-3 тыс. ккал и более. Потребление кислорода в этой зоне мощности составляет около 70-80% МП К и практически покрывает кислородный запрос во времяработы, так что кислородный долг к концу дистанции составля­ет менее 4 л, а концентрация лактата почти не превышает нормы (около 1-2 мМоль ■ л"1). Сдвиги показателей дыхания и кровообращения ниже максимальных. ЧСС держится на уровне 160-180 уд • мин"1. Не­смотря на переключение окислительных процессов на утилизацию жиров (происходящую, например, у марафонцев после пробегания начальных 30 км пути), на дистанции продолжается расход углеводов. Это приводит куменьшению почти в 2 раза содержания в крови глю­козы — явлению гипогликемии. Это резко нарушает функции ЦНС, координацию движений, ориентацию в пространстве, а в тяжелых случаях вызывает потерю сознания. К тому же длительная монотон­ная работа приводиттакже к запредельному торможению в ЦНС, на­зываемому еще охранительным торможением, так как оно снижая темп движения или прекращая работу, предохраняет организм спорт­смена, в первую очередь нервные клетки, от разрушения и гибели.

Ведущее значение в зоне умеренной мощности имеют большие за-пасыуглеводов, предотвращающие гипогликемию, и функциональная устойчивость ЦНСк монотонии, противостоящая развитию запре­дельного торможения.


8.4.2. СТАНДАРТНЫЕ АЦИКЛИЧЕСКИЕ ДВИЖЕНИЯ

Данная группа движений характеризуется стереотипной про­граммой двигательных актов, но в отличие от циклических упражнений, эти акты разнообразны (1—2—3—4 и т. д.). Их подразделяют на движения качественного значения, оцениваемые в баллах — гимнас­тика, акробатика, фигурное катание, прыжки в воду, на батуте и др., и на движения, имеющие количественную оценку. Среди движений с количественной оценкой выделяют:

Собственно-силовые, характерные, например, для тяжелой атлетики, где сила спортсмена направлена на преодоление массы поднимаемой штанги, аускорение штанги изменяется мало (согласно второму закону Ньютона сила равна произведению массы на сообщаемое ей ускорение, в данном случае Fmax=mmax-а).

Скоростно-с иловые (прыжки, метания), где вес ядра, молота, диска, копья или вес собственного тела спортсмена — величина неизменная, а спортивный результат определяется заданным снаряду или телу ускорением, т. е. Fmax = m ■ amax.

Прицельные движения (стрельбапулевая, излука, городки, дартс и пр.), требующие устойчивости позы, тонкой мышечной координации, точности анализа сенсорной информации.

Во всех этих упражнениях сочетается динамическая и статичес­кая работа анаэробного (прыжки, метания) или анаэробно-аэроб­ного характера (например, вольные упражнения в гимнастике, произвольная программа в фигурном катании и др.), которые по длительности выполнения соответствуют зонам максимальной и субмаксимальной мощности. Суммарные энерготраты здесь не­высоки из-за краткости выполнения, кислородный запрос на ра­боту и кислородный долг (~ 2 л) малы. Значительных требований к вегетативным системам организма не предъявляется. Выполнение упражнений требует хорошей координации, пространственной и временной точности движений, развитого чувства времени, кон­центрации внимания, значительной абсолютной и относительной силы.

Ведущими системами являются ЦНС, сенсорные системы, двига­тельный аппарат.
8.5. ФИЗИОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА НЕСТАНДАРТНЫХ ДВИЖЕНИЙ

К нестандартным или ситуационным движени-я м относят спортивные игры (баскетбол, волейбол, теннис, футбол, хоккей и др.) и единоборства (бокс, борьба, фехтование). К этой же группе причисляют кроссы из-за большой сложности профиля со­временных трасс. Для этих движений характерны:

• переменная мощность работы (от максимальной до умерен­ной или полной остановки спортсмена), сопряженная с постоянными изменениями структуры двигательных действий и направления движений;

• изменчивость ситуации, сочетаемая с дефицитом времени.

Нестандартные упражнения характеризуются ациклической или смешанной (циклической и ациклической) структурой движе­ний, преобладанием динамической скоростно-силовой работы (в борьбе существенны и статические напряжения), высокой эмоцио­нальностью.

В отношении /ЩСпредъявляются высокие требования к «твор­ческой» фунщиимозга из-за отсутствия стандартных программ дви­гательной деятельности. Особое значение имеют процессы восприя­тия и переработки информации в крайне ограниченные интервалы времени, что требует повышенного уровня пропускной способности мозга. Спортсмену необходима не только оценка текущей ситуации, но и предвосхищение возможных ее будущих изменений, т. е. разви­тая способность к экстраполяции.

При выполнении ударных действии и бросков (мяча, шайбы) ос­новная рабочая фаза движений занимает десятые и сотые доли се­кунды. Это исключает внесение сенсорных коррекций в текущий двигательный акти, следовательно, все движение должно быть за­ранее и очень точно запрограммировано. При этом сама программа действия и имеющиеся двигательные навыки спортсмена должны постоянно варьировать в зависимости от изменений условий их выполнения (исключение могут составлять только штрафные брос­ки и удары). Все эти условия ситуационной деятельности требуют высокой возбудимости и лабильности нервных центров, силы и под­вижности нервных процессов, преимущественного представитель­ства среди спортсменов таких типов ВНД как холерик и сангвиник, помехоустойчивости к значительной нервно-эмоциональной на­пряженности, а также специфических черт умственной работоспо­собности — развитого оперативного мышления, большого объема и концентрации внимания, а в командных играх — и распределения внимания, способности к правильному принятию решений и быст­рой мобилизации из памяти тактических комбинаций, двигатель­ных навыков и умений для эффективного решения тактических задач.

Роль сенсорных систем исключительно велика, особенно дис­тантных — зрительной и слуховой. В ситуационной деятельности имеют значение как центральное зрение (при бросках мяча в коль­цо, нанесении ударов в боксе, фехтовании и т. п.), так и перифери­ческое (для ориентировки на поле, ринге). Для четкого восприятия действий игроков, соперников и летящего мяча, шайбы, особен­но при больших скоростях (мяча в теннисе, шайбы в хоккее — до 200 км • час"1 и более) и малых размерах (настольный теннис) спортсмену необходимы хорошая острота и глубина зрения, идеальный мышечный баланс глаз, а в командных играх — большие размеры поля зрения. Для ориентации в пространстве и во времени имеет важное значение слуховая сенсорная система. Резкие изменения направле­ния и формы движений, повороты, падения, броски вызывают сильное раздражение отолитового и ампулярного аппаратов вести­булярной сенсорной системы. Требуется высокая вестибулярная ус­тойчивость, чтобы не происходили при этом нарушения координа­ции движений и негативные вегетативные реакции. В двигательной сенсорной системе занятия ситуационными видами спорта вызыва­ют повышение проприоцептивной чувствительности в тех суставах, которые имеют основное значение в данном виде спорта (например, у баскетболистов — в лучезапястном суставе, у футболистов — в го­леностопном).

Занятия ситуационными упражнениями развивают в двигатель­ном аппарате высокую возбудимость и лабильность скелетных мышц, хорошую синхронизацию скоростных возможностей разных мышечных групп. Развитие силы и скоростно-силовых способнос­тей помогает осуществлению точных и резких бросков и ударов. Тре­буется также хорошая гибкость (например, в борьбе) и выносли­вость.

Энерготраты в ситуационных упражнениях сравнительно ниже, чем в циклических. В связи с большими различиями в размерах пло­щадок, числе участников, темпе движений соотношение аэробных и анаэробных процессов энергообразования заметно различается: в во­лейболе , например, преобладают аэробные нагрузки, в футболе — аэробно-анаэробные, в хоккее с шайбой — анаэробные. Переменная мощность физических нагрузок позволяет во многом удовлетворять кислородный запрос уже во время работы и снижает величину кисло­родного долга.

Основной характеристикой вегетативных функций в ситуацион -ных движениях является не достигнутый во время нагрузки рабочий уровень, а степень его соответствия мощности работы в данный момент. ЧСС, постоянно изменяясь, колеблется, в основном, в ди­апазоне от 130 до 180-190 уд- мин1; частота дыхания —от 40 до 60 вдохов в 1 мин. Величины ударного и минутного объема крови, глу­бины и минутного объема дыхания, МПКпри работе скромнее, чем у спортсменов в циклических видах спорта. В связи с большими потерями воды, а также рабочими энерготратами, масса тела спортсмена, особенно после соревновательных нагрузок, снижается на 1-3 кг.

Ведущими системами являются ЦНС, сенсорные системы, дви­гательный аппарат.


9. ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ И ЗАКОНОМЕРНОСТИ РАЗВИТИЯ ФИЗИЧЕСКИХ КАЧЕСТВ

Двигательная деятельность человека, в том числе спортивная ха­рактеризуется определенными качественными параметрами. Вчисле основных физических качеств различают мышечную силу, быстроту, выносливость, ловкость и гибкость. Ряд авторов выделяют в виде ос­новного качества скоростно-силовые возможности человека.

Развитие физических качеств в разной мере зависит от врожден­ных особенностей. Вместе с тем в индивидуальном развитии ведущим механизмом является условно-рефлекторный. Этот механизм обес­печивает качественные особенности двигательной деятельности конкретного человека, специфику их проявления и взаимоотноше­ний. При тренировке скелетных мышц (и соответствующих отделов центральной нервной системы) одной стороны тела условно-рефлек­торным путем достигаются идентичные реакции отделов нервной системы и мышц другой половины тела, обеспечивающие развитие данного качества на неупражнявшихся симметричных мышцах.

Для проявления физических качеств характерна их меньшая осознаваемость по сравнению с двигательными навыками, большая значимость для них биохимических, морфологических и вегетатив­ных изменений в организме.


9.1. ФОРМЫ ПРОЯВЛЕНИЯ, МЕХАНИЗМЫ И РЕЗЕРВЫ РАЗВИТИЯ СИЛЫ

Сила является одним из ведущих физических качеств спортсме­на. Она необходима при выполнении многих спортивных упражне­ний, особенно в стандартных ациклических видах спорта (тяжелой атлетике, спортивной гимнастике, акробатике и др.).


9.1.1. ФОРМЫ ПРОЯВЛЕНИЯ МЫШЕЧНОЙ СИЛЫ

Сила мышцы — это способность за счет мышечных сокращений преодолевать внешнее сопротивление. При ее оценке различают абсо­лютную и относительную мышечную силу.

Абсолютная сила— это отношение мышечной силы к физиологическому поперечнику мышцы (площади поперечного разреза всех мышечных волокон). Она измеряется в Ньютонах или кило­граммах силы на 1 см2 (Н / см2 или кг /см2). В спортивной практике измеряют динамометром силу мышцы без учета ее поперечника.

Относительная сила— это отношение мышечной силы к ее анатомическому поперечнику (толщине мышцы в целом, которая за­висит от числа и толщины отдельных мышечных волокон). Она измеряется в тех же единицах. В спортивной практике для ее оценки используют более простой показатель: отношение мышечной силы к массе тела спортсмена, т. е. в расчете на 1 кг.

Абсолютная мышечная сила необходима в собственно-силовых упражнениях, где максимальное изометрическое напряжение обес­печивает преодоление большого внешнего сопротивления — при подъемах штанги максимального или околомаксимального веса, при выполнении в гимнастике стойки на кистях, переднего и заднего равновесия на кольцах и упора руки в сторону («крест») и др. Отно­сительная мышечная сила определяет успешность перемещения соб­ственного тела (например, в прыжках).

В зависимости от режима мышечного сокращения различают ^статическую (изометрическую) силу, проявляемую яри статических усилиях, и 2) динамическую силу— при динамической работе, в том числе так называемую взрывную силу.

Взрывная сила определяется скоростно-силовыми воз­можностями человека, которые необходимы для придания возможно большего ускорения собственному телу или спортивному снаряду (например, при стартовом разгоне). Она лежит в основе та­ких важных для спортсмена качеств как прыгучесть (при прыжках) или резкость (в метаниях, ударах). При проявлении взрывной силы важна не столько величина силы, сколько ее нарастание во времени, т.е. градиент силы. Чем меньше длительность нарастания силы до ее максимального значения, тем выше результативность выполне­ния прыжков, метаний, бросков, ударов.

Скоростно-силовые возможности человека в большей мере зави­сят от наследственных свойств организма, чем абсолютная изометри­ческая сила.


9.1.2. ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ РАЗВИТИЯ СИЛЫ

В развитии мышечной силы имеют значение: 1) внутримышеч­ные факторы, 2) особенности нервной регуляции и 3) психофизио­логические механизмы.

Внутримышечные факторы развития силы включают в себя биохимические, морфологические и функциональные особен­ности мышечных волокон.

Физиологический поперечник, зависящий от числа мышечных волокон (он наибольший для мышц с перистым строением).

Состав (композиция) мышечных волокон: соотношение слабых и более возбудимых медленных мышечных волокон (окислительных, малоутомляемых) и более мощных высокопороговых быстрых мышечных волокон (гликолитических, утомляемых).

• Миофибриллярная гипертрофия мышцы — т.е. увеличение мышечной массы, которая развивается при силовой тренировке в результате адаптационно-трофических влияний и характеризуется ростом толщины и более плотной упаковкой сократительных элементов мышечного волокна — миофибрилл. (При этом окружность плеча может достигать 80 см, а бедра — 95 см и более).

Нервная регуляция обеспечивает развитие силы за счет совершенствования деятельности отдельных мышечных волокон, двигательных единиц (ДЕ) целой мышцы и межмышечной коорди­нации. Она включает следующие факторы.

Увеличение частоты нервных импульсов, поступающих в скелетные мышцы от мотонейронов спинного мозга и обеспечивающих переход от слабых одиночных сокращений их волокон к мощным тетаническим.

Активация многих ДЕ— при увеличении числа вовлеченных в двигательный акт ДЕ повышается сила сокращения мышцы.

Синхронизация активности ДЕ— одновременное сокращение возможно большего числа активных ДЕ резко увеличивает силу тяги мышцы.

Межмышечная координация — сила мышцы зависит от деятельности других мышечных групп: сила мышцы растет при одновременном расслаблении ее антагониста, она уменьшается при одновременном сокращении других мышц и увеличивается при фиксации туловища или отдельных суставов мышцами-антагонистами. Например, при подъеме штанги возникает явление натуживания (выдох при закрытой голосовой щели), приводящее к фиксации мышцами туловища спортсмена и создающее прочную основу для преодоления подни маемого веса.

Психофизиологические механизмы увеличения мышечной силы связаны с изменениями функционального состоя­ния (бодрости, сонливости, утомления), влияниями мотиваций и эмоций, усиливающих симпатические и гормональные воздей­ствия со стороны гипофиза, надпочечников и половых желез; био­ритмов.

Важную роль в развитии силы играют мужские половые гормоны (андрогены), которые обеспечивают увеличение синтеза сократи­тельных белков в скелетных мышцах, Их у мужчин в 10 раз больше, чем у женщин. Этим объясняется больший тренировочный эффект развития силы у спортсменов по сравнению со спортсменками, даже при абсолютно одинаковых тренировочных нагрузках.

Открытие эффекта андрогенов привело к попыткам ряда трене­ров и спортсменов использовать для развития силы аналоги половых гормонов — анаболические стероиды. Однако, вскоре обнаружились пагубные последствия их приема. В результате действия анаболиков успортсменов-мужчин подавляется функция собственных половых желез (вплоть до полной импотенции и бесплодия), а у женщин-спортсменок происходит изменение вторичных половых признаков по мужскому типу (огрубение голоса, изменение характера оволосе­ния) и нарушается специфический биологический цикл женского организма (возникают отклонения в длительности и регулярности месячного цикла, вплоть до полного его прекращения и подавления детородной функции). Особенно тяжелые последствия наблюдаются успортсменов-подростков. В результате подобные препараты были отнесены к числу запрещенных допингов.

Попытки заставить мышцу развивать мощные тетанические со­кращения с помощью электростимуляции также не привели к успе­ху. Эффект воздействия прекращался через 1 -2 недели, а искусственно вызванная способность развивать сильные сокращения не ': могла полноценно использоваться, так как не включалась в необхо­димые двигательные навыки.
9.1.3. ФУНКЦИОНАЛЬНЫЕ РЕЗЕРВЫ СИЛЫ

У каждого человека имеются определенные резервы мышечной силы, которые могутбыть включены лишь при экстремальных ситу­ациях (чрезвычайная опасность для жизни, чрезмерное психоэмоци -ональное напряжение и т.п.).

В условиях электрического раздражения мышцы или под гипно­зом можно выявить максимальную мышечную силу, : которая окажется больше той силы, которую человек проявляет при ; предельном произвольном усилии — так называемой максималь­ной произвольной силы. Разница между максимальной мышечной силой и максимальной произвольной силой называется деф ицитом мышечной силы. Эта величина уменьшается в ходе силовой тренировки, так как происходит перестройка морфофунк-циональных возможностей мышечных волокон и механизмов их произвольной регуляции.

У систематически тренирующихся спортсменов наряду с эконо-мизацией функций происходит относительное увеличение общих и специальных физиологических резервов. Приэтом первые реализуются через общие для различных упражнений прояв­ления физических качеств, а вторые — в виде специальных для каж­дого вида спорта навыков и особенностей силы, быстроты и вы нос-ливости.

К числу общих функциональных резервов мышечной силы отнесен ы следующие факторы:

включение дополнительных ДЕ в мышце;

синхронизация возбуждения ДЕ в мышце;

своевременное торможение мышц-антагонистов;

координация (синхронизация) сокращений мышц-агонистов;

повышение энергетических ресурсов мышечных волокон;

переход от одиночных сокращений мышечных волокон к тетаническим;

усиление сокращения после оптимального растяжения мышцы;

адаптивная перестройка структуры и биохимии мышечных волокон (рабочая гипертрофия, изменение соотношения объемов медленных и быстрых волокон и др.).
9.2. ФОРМЫ ПРОЯВЛЕНИЯ, МЕХАНИЗМЫ И РЕЗЕРВЫ РАЗВИТИЯ БЫСТРОТЫ

Значительная часть спортивных упражнений не только требует максимально возможного развития скорости движений, но и проис­ходит в условиях дефицита времени. Достижение успеха в подобных упражнениях возможно лишь при хорошем развитии физического качества быстроты.


9.2.1. ФОРМЫ ПРОЯВЛЕНИЯ БЫСТРОТЫ

Быстрота— это способность совершать движения в минималь­ный для данных условий отрезок времени. Различают комплексные и элементарные формы проявления быстроты.

В естественных условиях спортивной деятельности быстрота про­является обычно в комплексных формах, включающих скорость двигательных действий и кратковременность умственных операций., и в сочетании с другими качествами.

К элементарным формам проявления быстроты относятся следующие.

Общая скорость однократных движений (или время одиночныхдействий) — например, прыжков, метаний.

Время двигательной реакции — латентный (скрытый) период простой (без выбора) и сложной (с выбором) сенсомоторной реакции, реакции надвижущийся объект (имеющее особенное значение в ситуационных упражнениях и спринте).

Максимальный темп движений, характерный, например, для спринтерского бега.

Оценка времени двигательной реакции (ВДР) производится от мо­мента подачи сигнала до ответного действия. Она является одним из наиболее распространенных показателей при тестировании быстроты. Это время чрезвычайно мало для передачи возбуждения от рецеп­торов в нервные центры и от них к мышцам. В основном оно затрачи­вается на проведение и обработку информации в высших отделах мозга и поэтому служит показателем функционального состояния центральной нервной системы.

У нетренированных лиц величина ВДР при движении пальцем в ответ на световой сигнал укорачивается с возрастом от 500 -800 мс у детей 2 -3-хлетдо 190 мс у взрослых людей. Для спортсменов харак­терны более короткие величины этой реакции: в среднем, 120 мс у спортсменов и 140 мс — у спортсменок. У высококвалифицирован­ных представителей ситуационных видов спорта и бегунов на корот­кие дистанции эти величины еще меньше — порядка 110 мс, в отли­чие от бегунов-стайеров, показывающих 200-300 мс и более.

При выполнении специализированных упражнений ВДР у вы­сококвалифицированных спортсменов также очень невелико. Так, стартовое время (от выстрела стартового пистолета до ухода со стар­та) у бегунов-спринтеров, участников Олимпийских игр и чемпио­натов мира, составляет, в среднем, при беге на 50-60 м 139 мс у муж-чини 159 мсуженщин, при беге на 100 м, соответственно, 150-160 мс и 190 мс. Знаменитый спринтер БенДжонсон мог уходить со старта через 99,7 мс. По теоретическим расчетам ВДР, равное 80-90 мс, во­обще составляет для человека предел его функциональных возмож­ностей.

Факторами, влияющими на ВДР, являются врожденные особен­ности человека, его текущее функциональное состояние, мотивации и эмоции, спортивная специализация, уровень спортивного мастер­ства, количество воспринимаемой спортсменом информации.

Другим простым показателем быстроты является максимальный темп постукиваний пальцем за короткий интервал времени — 10 с, так называемый теппинг- тест. Взрослые лица производят 50-60 движений за 10 с, спортсмены ситуационных видов спорта и спринтеры — порядка 60-80 движений и более.

Особым проявлением быстроты является скорость специализиро­ванных умственных операций: при решении тактических задач высо­коквалифицированные спортсмены затрачивают всего 0,5-1,0 с, а время принятия решения составляет у них половину этого периода.
9.2.2. ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ РАЗВИТИЯ БЫСТРОТЫ

В основе проявления качества быстроты лежат индивидуальные особенности протекания физиологических процессов в нервной и мышечной системах. Быстрота зависит от следующих факторов.

• Лабильность — скорость протекания возбуждения в нервных и мышечных клетках.

Подвижность нервных процессов — скорость смены в коре больших полушарий возбуждения торможением и наоборот.

Соотношение быстрых и медленных мышечных волокон в скелетных мышцах.

Уровень лабильности и подвижности нервных процессов опреде-ляетскорость восприятия и переработки поступающей информации, а лабильность мышц и преобладание быстрых двигательных еди­ниц — скорость мышечного компонента быстроты (сокращения и расслабления мышцы, максимальный темп движений).

В сложных ситуациях, требующих реакции с выбором, и при уве­личении поступающей информации большое значение имеет про­пускная способность мозга спортсмена — количе­ство перерабатываемой информации за единицу времени. Величина ВДР прямо-пропорционально нарастает с увеличением числа воз­можных альтернативных решений — до 8 альтернатив, а при боль­шем их числе оно резко и непропорционально повышается.

При осуществлении/секции на движущийся объект (РДО) боль­шое значение приобретают явления экстраполяции, позволяющие предвидеть возможные траектории перемещения соперников или спортивных снарядов, что ускоряет подготовку ответных действий спортсмена. Это особенно необходимо, например, в хоккее, теннисе, стрельбе полетящим тарелкам и т. п. Способствуют этому и поисковые движения глаз: быстрота действий спортсмена здесь связана со скорос­тными возможностями мышц глазо-двигательного аппарата, без ко­торых невозможно эффективно осуществлять следящие движения.


9.2.3. ФИЗИОЛОГИЧЕСКИЕ РЕЗЕРВЫ РАЗВИТИЯ БЫСТРОТЫ

В особых ситуациях (электрическое раздражение, гипноз, силь­ное эмоциональное потрясение) у человека может неимоверно возра­сти быстрота его реакций. Так, например, максимальный темп по­стукиваний достигает 15 в 1 с, хотя при произвольных движениях он непревышает6-12в 1 с. Это доказывает наличие физиологических резервов быстроты даже у нетренированного человека.

В процессе спортивной тренировки рост быстроты обусловлен следующими механизмами.

Увеличение лабильности нервных и мышечных клеток, ускоряющих проведение возбуждения по нервам и мышцам.

Рост лабильности и подвижности нервных процессов, увеличивающих скорость переработки информации в мозгу.

Сокращение времени проведения возбуждения через межнейронные и нервно-мышечные синапсы.

Синхронизация активности ДЕ в отдельных мышцах и разных мышечных группах.

Своевременное торможение мышц-антагонистов.

Повышение скорости расслабления мышц.

Для каждого человека имеются свои пределы роста быстроты, контролируемые генетически. Скорость ее нарастания также являет­ся врожденным свойством. Кроме того, в спорте существует явление стабилизации скорости движений на некотором достигнутом уровне. Повысить этот предел произвольно обычно не удается, и втрениров-ке применяются специальные средства: бег под горку, бег на тред­бане с повышенной скоростью с использованием виса на ремнях, бег за мотоциклом, за лошадью, плавание с тянущей резиной и т. п. Этим путем достигается дополнительное повышение лабильности нервных центров и работающих мышц.


9.3. ФОРМЫ ПРОЯВЛЕНИЯ, МЕХАНИЗМЫ И РЕЗЕРВЫ РАЗВИТИЯ ВЫНОСЛИВОСТИ

Выносливостью называют способность наиболее длительно или в заданных границах времени выполнять специализированную работу без снижения ее эффективности. Ее определяют также как способность преодолевать развивающееся утомление или снижение работоспособности человека.


9.3.1. ФОРМЫ ПРОЯВЛЕНИЯ ВЫНОСЛИВОСТИ

Различают 2 формы проявления выносливости — общую и специ­альную.

Общая выносливость характеризует способность длительно выполнять любую циклическую работу умеренной мощ­ности с участием больших мышечных групп, а специальная вы­носливость проявляется в различных конкретных видах двига­тельной деятельности.

Физиологической основой общей выносливости является высо­кий уровень аэробных возможностей человека — способность вы­полнять работу за счет энергии окислительных реакций.

Аэробные возможности зависят от:

аэробной мощности, которая определяется абсолютной и относительной величиной максимального потребления кислорода (МПК);

аэробной емкости — суммарной величины потребления кислорода на всю работу.

Специальная выносливость определяется теми требованиями, которые предъявляются конкретными физическими нагрузками организму спортсмена.


9.3.2. ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ РАЗВИТИЯ ВЫНОСЛИВОСТИ

Общая выносливость зависит от доставки кислорода работаю­щим мышцами, главным образом, определяется функционировани­ем кислородтранспортной системы: сердечно-сосудистой, дыхатель­ной и системой крови.

Развитие общей выносливости прежде всего обеспечивается раз­носторонними перестройками в дыхательной системе. Повышение эффективности дыхания достигается:

увеличением (на 10-20 %) легочных объемов и емкостей (ЖЕЛ достигает 6-8 л и более),

нарастанием глубины дыхания (до 50-55% ЖЕЛ),

увеличением диффузионной способности легких, что обусловлено увеличением альвеолярной поверхности и объема крови в легких, протекающей через расширяющуюся сеть капилляров,

увеличением мощности и выносливости дыхательных мышц, что приводит к росту объема вдыхаемого воздуха по отношению к функциональной остаточной емкости легких (остаточному объему и резервному объему выдоха).

Все эти изменения способствуют также экономизации дыхания: большему поступлению кислорода в кровь при меньших величинах легочной вентиляции. Повышение возможности более выгодной ра­боты за счет аэробных источников энергии позволяет спортсмену дольше не переходить к энергетически менее выгодному использо­ванию анаэробных источников, т. е. повышает вентиляционный по­рог анаэробного обмена (ПАНО).

Решающую роль в развитии общей выносливости играют также морфофункциональные перестройки в сердечно-сосудистой систе­ме, отражающие адаптацию к длительной работе:

увеличение объема сердца («большое сердце» особенно характерно для спортсменов-стайеров — рис. 31) и утолщение сердечной мышцы — спортивная гипертрофия,

рост сердечного выброса (увеличение ударного объема крови),

замедление частоты сердечных сокращений в покое (до 40-50 уд./мин) в результате усиления парасимпатических влияний — спортивная брадикардия, что облегчает восстановление сердечной мышцы и последующую ее работоспособность,

снижение систолического артериального давления в покое (ниже 105ммрт.ст.) — спортивная гипотония.

В системе крови повышению общей выносливости способствуют:

• увеличение объема циркулирующей крови (в среднем на 20%) за счет, главным образом, увеличения объема плазмы, при этом адаптивный эффект обеспечивается: 1) снижением вяз­кости крови и соответствующим облегчением кровотока и 2) большим венозным возвратом крови, стимулирующим более сильные сокращения сердца,

увеличение общего количества эритроцитов и гемоглобина (следует заметить, что при росте объема плазмы показатели их относительной концентрации в крови снижаются),

уменьшение содержания лактата (молочной кислоты) в крови при работе, связанное, во-первых, с преобладанием в мышцах выносливых людей медленных волокон, использующих лактат как источник энергии, и во-вторых, обусловленное увеличением емкости буферных систем крови, в частности, ее щелочных резервов. При этом лактатный порог анаэробного обмена (ПАНО) также нарастает, как и вентиляционный ПАНО.

Несмотря на указанные адаптивные перестройки функций, в организме стайера происходят значительные нарушения постоянства внутренней среды (перегревание и переохлаждение, падение содер­жания глюкозы в крови и т. п.). Способность спортсмена переносить весьма длительные нагрузки обеспечивается его способностью «тер­петь» такие изменения.

В скелетных мышцах у спортсменов", специализирующихся в ра­боте на выносливость, преобладают медленные мышечные волокна (до 80-90 %). Рабочая гипертрофия протекает по саркоплазма-тическому типу, т.е. за счет роста объема саркоплазмы. В ней накапливаются запасы гликогена, липидов, миоглобина, становится богаче капиллярная сеть, увеличивается число и размеры митохонд­рий. Мышечные волокна при длительной работе включаются по­сменно, восстанавливая свои ресурсы в моменты отдыха.

В центральной нервной системе работа на выносливость сопро­вождается формированием стабильных рабочихдоминант, которые обладают высокой помехоустойчивостью, отдаляя развитие запре­дельного торможения в условиях монотонной работы. Особой спо­собностью к длительным циклическим нагрузкам обладают спорт­смены с сильной уравновешенной нервной системой и невысоким уровнем подвижности — флегматики.

Специальные формы выносливости характеризуются разными адаптивным перестройками организма в зависимости от специфики физической нагрузки.

Специальная выносливость в циклических видах спорта зависит от длины дистанции, которая определяет соотношение аэробного и анаэробного энергообеспечения.

В лыжных гонках на длинные дистанции соотношение аэробной и анаэробной работы порядка 95% и 5%; в академической гребле на 2 км, соответственно, 70% и 30%; вспринте — 5% и 95%. Это определя­ет разные требования к двигательному аппарату и вегетативным сис­темам в организме спортсмена.

Специальная выносливость к статической работе базируется на высокой способности нервных центров и работающих мышц поддер­живать непрерывную активность (без интервалов отдыха) в анаэроб­ных условиях. Торможение вегетативных функций со стороны мощ­ной моторной доминанты по мере адаптации спортсмена к нагрузке постепенно снижается, что облегчает дыхание и кровообращение. Статическая выносливость мышц шеи и туловища, содержащих больше медленных волокон, выше по сравнению с мышцами конеч­ностей, более богатых быстрыми волокнами.

Силовая выносливость зависит от переносимости нервной систе­мой и двигательным аппаратом многократных повторений натужи-вания, вызывающего прекращение кровотока в нагруженных мыш­цах и кислородное голодание мозга. Повышение резервов мышечно­го гликогена и кислородных запасов в миоглобине облегчает работу мышц. Однако почти полное и одновременное вовлечение в работу всех ДЕлишает мышцы резервных ДЕ, что лимитирует длительность поддержания усилий.

Скоростная выносливость определяется устойчивостью нервных центров к высокому темпу активности. Она зависит от быстрого вос­становления АТФ в анаэробных условиях за счет креатинфосфата и реакций гликолиза.

Выносливость в ситуационных видах спорта обусловлена устой ч и во-стью центральной нервной системы и сенсорных систем к работе пере­менной мощности и характера — «рваному» режиму, вероятностным перестройкам ситуации, многоальтернативному выбору, сохранению координации при постоянном раздражении вестибулярного аппарата.

Выносливость к вращениям и ускорениям требует хорошей ус­тойчивости вестибулярной сенсорной системы. Квалифициро­ванные фигуристы, например, без отрицательных соматических и вегетативных реакций могут переносить до 300 вращений на крес­ле Барани. После многократных вращений вокруг вертикальной оси в висе (тест Вертикаль) у этих спортсменов практически от­сутствует так называемое время поиска стабильной позы после опускания на опору. Активные вращения при выполнении специ­альных упражнений в большей мере способствуют повышению вестибулярной устойчивости, чем пассивные вращения на трена­жерах.

Выносливость к гипоксии, характерная, например, для альпини­стов, связана с понижением тканевой чувствительности нервных центров, сердечной и скелетных мышц к недостатку кислорода. Это свойство в значительной мере является врожденным. Л ишь несколько спортсменов-альпинистов во всем мире смогли под­няться на высоту более 8 тыс. м (Эверест) без кислородного при­бора. << предыдущая страница   следующая страница >>