введение. 3 Понятие алгоритма и его свойства. 4 Способы описания алгоритмо - umotnas.ru o_O
Главная
Поиск по ключевым словам:
Похожие работы
Название работы Кол-во страниц Размер
Программа «Системы корпоративного управления» 1 51.15kb.
Команд исполнителя (на примере учебного исполнителя). Свойства алгоритма. 1 119.52kb.
4. Перечень экзаменационных тем Дисциплина «Алгоритмы и их сложность» 1 69.39kb.
Алгоритм. Свойства алгоритма. Виды алгоритмов I 1 17.66kb.
Простейшие функции. Квадратные корни 1 327.36kb.
Вопросы к зачету «Теория алгоритмов» 1 6.89kb.
Понятие алгоритма и его свойств 1 198.91kb.
Программа курса «Дискретная математика» 1 27.07kb.
Билет №1. Понятие множеств. Способы задания множеств. Основные числовые... 1 168.86kb.
Квантовые сво й ства атомов и молекул основные понятия и методы описания 2 288.81kb.
Алгоритм – описанная на некотором языке точная конечная система правил... 1 38.97kb.
Текущие международные проекты, конкурсы, гранты, стипендии (добавления... 2 497.73kb.
Викторина для любознательных: «Занимательная биология» 1 9.92kb.

введение. 3 Понятие алгоритма и его свойства. 4 Способы описания алгоритмо - страница №4/4

6.3. Системы программирования.

Процесс создания программы включает:

• Составление исходного кода программы (рис. 21) на языке программирования.

• Этап трансляции, необходимый для создания объектного кода программы.

• Построение загрузочного модуля, готового к исполнению.

Все перечисленные выше действия требуют наличия специальных программных средств.





Рис. 21. Процесс создания программы, готовой к исполнению.
Совокупность этих программных средств входит в состав системы программирования:

• Текстовый редактор (необходимый для создания и редактирова-

ния исходного кода программы на языке программирования).

• Компилятор.

• Редактор связей.

• Отладчик.

• Библиотеки функций.

• Справочная система.



6.4. Классификация и обзор языков программирования.

Современное состояние языков программирования можно представить в виде следующей классификации (рис. 22).




Рис. 22. Классификация языков программирования.
Процедурное программирование.

Процедурное или императивное (от лат. imperativus повелительный) программирование есть отражение фон Неймановской архитектуры компьютера. Программа, написанная на этом языке, представляет собой последовательность команд, определяющих алгоритм решения задачи. Основной командой является команда присвоения, предназначенная для определения и изменения содержимого памяти компьютера. Фундаментальная идея процедурного программирования — использование памяти компьютера для хранения данных. Функционирование программы сводится к последовательному выполнению команд с целью преобразования исходного состояния памяти, т.е. программа производит пошаговое преобразование содержимого памяти, изменяя его от исходного состояния к результирующему.

Одним из первых процедурных языков программирования высокого уровня стал Фортран (FORmula TRANslation), созданный в начале 50-х гг. в США фирмой IВМ. Первая публикация о нем появилась в 1954 г. Основное назначение языка — программирование научно-технических задач. Объектами языка являются целые и вещественные числа и числовые переменные. Выражения в нем формируются с помощью четырех арифметических действий: возведения в степень, логических операций И, ИЛИ, НЕ, операций отношения и круглых скобок. Основные операторы Фортрана - ввод, вывод, присваивание, условный и безусловный переход, цикл, вызов подпрограмм. Долгие годы он был одним из самых распространенных языков в мире. За это время накоплена огромная библиотека программ, написанных на Фортране. И сейчас ведутся работы над очередным стандартом Фортрана. В 2000 г. была реализована версия Фортран Р2к, имеется стандартная версия НРF (High Performance Fortran) для параллельных суперкомпьютеров. Многие средства Фортрана использованы в языках РL-1 и Бейсик.



Кобол (COmmon Businnes Oriented Language — общепринятый деловой язык) — язык программирования, ориентированный на решение задач обработки данных. Широко используется для решения учетно-экономических и управленческих задач. Разработан в США в 1958—1960 гг. Программа на Коболе имеет вид ряда предложений на английском языке и напоминает обычный текст. Группы последовательно записанных операторов объединяются в предложения, предложения - в параграфы, параграфы - в секции. Программист присваивает параграфам и секциям имена (метки), что облегчает непосредственное обращение к нужному участку программы. В СССР был принят русский вариант языка. В Коболе были реализованы мощные средства работы с большими объемами данных, хранящимися на различных внешних носителях. На этом языке создано много приложений, некоторые из них активно эксплуатируются и сейчас. Достаточно сказать, что одной из высокооплачиваемых категорией граждан в США являются программисты на Коболе.

Алгол (ALGOrithmic Language) разработан группой зарубежных специалистов в 1960 г., явился результатом международного сотрудничества конца 50-х гг. (Алгол-60). Алгол предназначался для записи алгоритмов, построенных в виде последовательности процедур, применяемых при решении поставленных задач. Специалисты-практики воспринимали этот язык неоднозначно, но тем не менее он как признанный международный язык сыграл большую роль в становлении основных понятий программирования и для обучения программистов. В нем впервые введены понятия «блочная структура программы», «динамическое распределение памяти». Внутри блока в Алголе можно вводить локальные обозначения, которые не зависят от остальной части программы. Несмотря на свое интернациональное происхождение, Алгол-60 получил меньшее распространение, чем Фортран. Например, не на всех зарубежных ЭВМ имелись трансляторы с Алгола-60. В 1968 г. в результате дальнейшего развития и усовершенствования Алгола-60 была создана версия Алгол-68. Это многоцелевой универсальный расширенный язык программирования. Последнее свойство позволяло с помощью одной и той же программы транслятора осуществлять трансляцию с различных расширенных версий языка без дополнительных затрат на приспособление этого языка к различным категориям пользователей, на получение проблемно-ориентированных диалектов языка. По своим возможностям Алгол-68 и сегодня опережает многие языки программирования, однако из-за отсутствия эффективных компьютеров для него не удалось своевременно создать хорошие компиляторы. В нашей стране в те годы под руководством академика Андрея Петровича Ершова был создан транслятор Альфа, который представлял достаточно удачную русифицированную версию Алгола.

В середине 60-х гг. сотрудники математического факультета Дартмутского колледжа Томас Курц и Джон Кемени создали специализированный язык программирования, который состоял из простых английских слов. Новый язык назвали универсальным символическим кодом для начинающих (Beginners All-purpose Symbolic Instruction Code) или сокращенно ВАS1С (Бейсик). 1964 г. считают годом рождения этого языка. Он получил самое широкое распространение при работе на персональных компьютерах в режиме интерактивного диалога. Популярность Бейсика объясняется как простотой его освоения, так и наличием достаточно мощных универсальных средств, пригодных для решения научных, технических и экономических задач, а также задач бытового характера, игровых и т.д. Согласно концепциям, заложенным в Бейсике, в нем широко распространены различные правила умолчания, что считается плохим тоном в большинстве языков программирования подобного типа. Возникло множество версий языка, зачастую мало совместимых друг с другом. Однако, зная одну из версий, можно без особого труда освоить любую другую. Бейсик активно поглощает многие концепции и новинки из других языков. Первоначально интерактивный режим осуществлялся с использованием интерпретатора, в настоящее время для этого языка имеются также и компиляторы.

В начале 60-х гг. каждый из существующих языков программирования был ориентирован на разные классы задач, но в той или иной мере привязан к конкретной архитектуре ЭВМ. Были предприняты попытки преодолеть этот недостаток путем создания универсального языка программирования. ПЛ/1 (РL/1 – Programming Language One) - первый многоцелевой универсальный язык, разработан в США фирмой 1ВМ в 1963-1966 гг. Это один из наиболее распространенных универсальных языков, он хорошо приспособлен для решения задач в области вычислительной техники: исследования и планирования вычислительных процессов, моделирования, решения логических задач и исследования логических схем, разработки систем математического обеспечения. При разработке РL/1 были широко использованы основные понятия и средства языков Фортран, Алгол-60, Кобол. РL/1 — богатый и гибкий язык, дает возможность производить вставки, исправлять текст программы в процессе ее отладки. Язык получил широкое распространение, трансляторы с него имеются для многих типов компьютеров. Компания IВМ и сегодня продолжает поддерживать этот язык.

Паскаль (Раsса1) является одним из наиболее популярных процедурных языков программирования, особенно для персональных компьютеров. Созданный как учебный язык программирования в 1968-1971 гг. Никлаусом Виртом в Высшей технической школе (ЕТН) в Цюрихе (Швейцария), он был назван в честь французского математика и философа Блеза Паскаля (1623—1662). Задачей Н. Вирта было создание языка, базирующегося на простом синтаксисе и небольшом количестве базовых конструкций, переводимого в машинный код простым компилятором.

В основе языковой концепции Паскаля лежит системный подход, предполагающий переход от общей задачи к частным (более простым и меньшим по объему). К основным принципам Паскаля следует отнести:



  • Структурное программирование. Его методология основана на использовании подпрограмм и независимых структур данных, объединяющих связанные между собой совокупности данных. Подпрограммы позволяют заменять в тексте программ упорядоченные блоки команд, отчего программный код становится более компактным. Структурный подход обеспечивает создание более понятных и легко читаемых программ, упрощает их тестирование и отладку.

  • Программирование сверху вниз, когда задача делится на простые, самостоятельно решаемые подзадачи. Затем на основе решенных подзадач выстраивается решение исходной задачи полностью — сверху вниз.

В основу разработки языка Паскаль был положен Алгол-60, но в нем ужесточен ряд требований к структуре программы и имеются возможности, позволяющие успешно применять его для создания крупных проектов, например, программ-трансляторов. Паскаль реализован для всех типов компьютеров, в настоящее время используется во многих учебных заведениях для обучения программированию, а также для создания больших реальных проектов.

Период с конца 60-х до начала 80-х гг. характеризуется бурным ростом числа различных языков программирования, сопровождавшим, как это ни парадоксально, кризис программного обеспечения. Этот кризис особенно остро переживало военное ведомство США. В январе 1975 г. Пентагон решил навести порядок среди бесчисленного множества трансляторов и создал комитет для разработки одного универсального языка. На конкурсной основе комитет рассмотрел сотни проектов и выяснил, что ни один из существующих языков не может удовлетворить их требованиям, для-окончательного рассмотрения было оставлено два проекта. В мае 1979 г. был объявлен победитель - группа ученых во главе с Жаном Ихбиа. Победивший язык назвали АДА, в честь Алы Лавлейс, дочери великого поэта Байрона. Она в юности была увлечена идеями Чарльза Бэббиджа и помогала ему составлять описание машины, а в начале 40-х гг. XIX в. разработала первую в мире программу для вычислительной машины. Язык АДА — прямой наследник Паскаля. Он предназначен для создания и длительного сопровождения больших программных систем, управления процессами в реальном масштабе времени. В языке четко выражена модульность его конструкций, причем обеспечивается удобство организации разнообразных связей между модулями. Важным его достоинством является возможность параллельного программирования ветвей программы, которые затем могут реализоваться на многопроцессорных компьютерах. Язык АДА сложен для изучения.

Язык программирования С (Си) был разработан в лаборатории Ве11 для реализации операционной системы UNIX в начале 70-х гг. и не рассматривался как массовый. Он планировался для замены Ассемблера, чтобы иметь возможность создавать столь же эффективные и компактные программы, и в то же время не зависеть от конкретного типа процессора. По набору управляющих конструкций и структур данных С имеет возможности, присущие высокоуровневым языкам, и вместе с тем он располагает средствами прямого обращения к функциональным узлам компьютера. Синтаксис языка С позволяет создавать лаконичный программный код. Одна из существенных особенностей С, приближающая его к функциональным языкам, состоит в том, что различия между выражениями и операторами сглаживаются. Например, выражения, являющиеся операторами программы, могут выполнять дополнительно операции присваивания. Использование подпрограмм основано на понятии функции, которая может также сочетать в себе возможности процедуры. Понятие процедуры в языке С отсутствует. Синтаксис языка затрудняет читаемость программы. Отсутствие строгой типизации данных, возможность в одном выражении сочетать несколько действий делает этот язык привлекательным для программистов, предоставляя им дополнительные возможности, но не способствует надежности создаваемых программ. Язык С популярен и широко используется профессиональными программистами. В настоящее время он реализован для большинства компьютерных платформ.
Функциональное программирование.

Суть функционального (аппликативного) программирования определена А.П. Ершовым как «способ составления программ, в которых единственным действием является вызов функции, единственным способом расчленения программы на части является введение имени функции, а единственным правилом композиции — оператор суперпозиции функций. Никаких ячеек памяти, ни операторов присваивания, ни циклов, ни, тем более, блок-схем, ни передачи управления».

Ключевым понятием в функциональных языках является выражение. К ним относятся константы, структурированные объекты, функции, их тела и вызовы функций. Функциональный язык программирования состоит из: совокупности базовых функций; классов констант, действия над которыми могут производить функции; предписаний, устанавливающих правила построения выражений и новых функций на основе базовых или рекурсивно через себя.

Программа, написанная на функциональном языке, напоминает определение и перечень специфических особенностей задачи и представляет собой последовательность описаний функций и выражений. Выражение вычисляется редукционным способом, т.е. сведением сложного к простому. Обращения к базовым функциям приводят к их замене соответствующими значениями. Вызовы функций, не являющихся базовыми, заменяются их телами, а их параметры фактическими аргументами.

Функциональное программирование не рассматривает память как место для хранения данных, в нем используется математическое понятие переменной и функции. Переменные временно обозначают объекты программы. Как и в математике, функции функциональных языков отображают одни объекты в другие, аргументы — в значения. Нет принципиальных различий между константами и функциями, т.е. между операциями и данными. Функция может быть результатом обращения к другой функции и может быть элементом структурированного объекта. При обращении к функции число ее аргументов не обязательно должно совпадать с числом параметров, определенных при ее описании.

Первым таким языком стал Лисп (LISP, LISt Processing - обработка списков), созданный в 1959 г. Джоном Маккарти. Этот язык ориентирован на структуру данных в форме списка и позволяет организовать эффективную обработку больших объемов текстовой информации. Существенная черта языка — единообразие программных структур и структур данных: все выражения записываются в виде списков.



Логическое программирование.

Создание языка искусственного интеллекта Пролог (PROLOG, PROgramming in LOGic программирование в терминах логики) в 1973 г. французским ученым Аланом Кольмероэ открыло новую область — логическое или реляционное программирование.

Концепция логического программирования базируется на понятии отношение. Логическая программа — это совокупность аксиом и правил, определяющих отношения между объектами и целью. Выполнение программы представляет собой попытку доказательства логического утверждения, построенного из программы по правилам, определенным семантикой используемого языка. Результатом вычислений является вывод следствий из аксиом. Алгоритм логической программы предполагает определение и перечень специфических свойств объектов и отношений между ними, а не определение порядка выполнения отдельных шагов. Это подтверждает декларативный характер логического языка программирования. Логические программы не отличаются высоким быстродействием, так как процесс их выполнения сводится к построению прямых и обратных цепочек рассуждений разнообразными методами поиска.

Программа на языке Пролог, в основу которой положена математическая модель теории исчисления предикатов, строится из последовательности фактов и правил, затем формулируется утверждение, которое Пролог будет пытаться доказать с помощью введенных правил. Пользователь только описывает структуру задачи, а внутренний механизм Пролога сам ищет решение с помощью методов поиска и сопоставления.


Объектно-ориентированное программирование (ООП).

Пионером данного направления явился язык Смолток (5таlltalк), первоначально предназначенный для реализаций функций машинной графики. Работа над языком началась в 1970 г. в исследовательской лаборатории ХЕRОХ (США), а закончилась в 1980 г. окончательным вариантом интерпретатора Smalltalk-80. Данный язык оригинален тем, что его синтаксис очень компактен и базируется исключительно на понятии объекта. В нем отсутствуют операторы или данные, все, что входит в Смолток, является объектами, а объекты общаются друг с другом исключительно с помощью сообщений. В настоящее время Visual Age for Smalltalk активно развивается компанией IВМ.

Основой объектно-ориентированного программирования (ООП) является понятие объект. Его суть состоит в том, что объект объединяет в себе структуры данных и характерные только для него процедуры (методы) их обработки. Такой подход полностью меняет стиль программирования, он заключается в отображении физических объектов реального мира на программную среду. Работать с объектами удобнее и естественнее, чем с традиционными конструкциями процедур преобразования данных. Объединение данных и свойственных им процедур обработки в одном объекте, детальная реализация которых остается скрытой для пользователей, называется инкапсуляцией и является одним из важнейших принципов ООП.

Другим фундаментальным понятием ООП является класс. Класс есть шаблон, на основе которого может быть создан конкретный программный объект, он описывает свойства и методы, определяющие поведение объектов этого класса. В ООП класс представляет собой абстрактный тип данных и является механизмом для создания объектов. Объявление класса есть логическая абстракция, определяющая новый тип объекта, а определение объекта как экземпляра клаcса создает этот объект физически, т.е. размещает объект в памяти.

ООП является более естественным, так как предоставляет возможность выбрать имеющиеся или создать новые объекты и организовать взаимодействия между ними. Следовательно, объектно-ориентированные языки по сравнению с процедурными являются языками более высокого уровня:

Следующими важнейшими принципами ООП являются наследование и полиморфизм. Наследование предусматривает создание новых классов на базе существующих и позволяет классу-потомку иметь (наследовать) все свойства класса-родителя. При работе с объектами иерархии «родители — дети — и т.д.» разрешается задавать одинаковые имена различным по реализации методам, для обработки объектов разных ступеней иерархии. Это явление называется полиморфизм. Благодаря полиморфизму в ООП обработка объектов упрощается, так как одинаковым действиям объектов соответствуют одноименные методы.



Полиморфизм (от греч. «многоликость») означает, что рожденные объекты обладают информацией о том, какие методы они должны использовать в зависимости от того, в каком месте цепочки наследования они находятся. Другим основополагающим принципом ООП является модульность, — объекты заключают в себе полное определение их характеристик, никакие определения методов и свойств объекта не должны располагаться вне его, это делает возможным свободное копирование и внедрение одного объекта в другие.

К наиболее распространенным современным языкам программирования относятся С++ и Jаvа.

Язык С++ был разработан в начале 80-х гг. Бьярном Страуструпом в лаборатории Ве11 корпорации АТ&Т. Им была создана компактная компилирующая система, в основе которой лежал язык С, дополненный элементами языков ВСРL, Simula-67 и Алгол-68. Более ранние версии языка были известны как «С с классами». В июле 1983 г. С++ был впервые использован за пределами исследовательской группы автора, однако тогда еще многие особенности языка не были придуманы. К 1990 г. была выпущена третья версия языка С++, стандартизированная американским государственным комитетом стандартов АNSI. В 1990 г. сотрудник корпорации Sun Д. Гослинг на основе расширения С++ разработал объектно-ориентированный язык Оак, основным достоинством которого было обеспечение сетевого взаимодействия различных по типу устройств. Новая интегрируемая в Internet версия языка получила название Java. С января 1995 г. Java получает распространение в Internet.

По определению автора, Java является простым объектно-ориентированным и архитектурно-нейтральным языком интерпретирующего типа, обеспечивающим надежность, безопасность и переносимость, обладает высокой производительностью, многопоточностью и динамичностью.

Синтаксис языков С++ и Java практически полностью совпадает. Принципиальным различием является то, что язык С++ компилируемый в машинный код, а Java - в платформо-независимый байт-код (каждая команда занимает один байт), этот байт-код может выполняться с помощью интерпретатора - виртуальной Java-машины (Java Virtual Machine), версии которой созданы сегодня для любых платформ. С точки зрения возможностей объектно-ориентируемых средств, Java имеет ряд преимуществ перед С++. Язык Java имеет более гибкую и мощную систему инкапсуляции информации. Механизм наследования, реализованный в Java, обязывает к более строгому подходу к программированию, что способствует надежности и читабельности кода. Язык С++ обладает сложной неадекватной и трудной для понимания системой наследования. Возможности динамического связывания объектов одинаково хорошо представлены в обоих языках, но синтаксическая избыточность С++ и здесь принуждает к выбору языка Java. Сегодня Java по популярности занимает второе место в мире после Бейсика.

Идеи ООП проникли во многие процедурные языки. Например, в состав интегрированной системы программирования Паскаль (корпорации Borland International), начиная с версии 5.5, входит специальная библиотека ООП Turbo Vision.

С середины 90-х гг. многие объектно-ориентированные языки реализуются как системы визуального программирования. Такие системы имеют интерфейс, позволяющий при составлении текста программы видеть те графические объекты, для которых она пишется. Отличительной особенностью этих систем является наличие в них среды разработки программ из готовых «строительных блоков», позволяющих создавать интерфейсную часть программного продукта в диалоговом режиме, практически без написания программных операций. Система берет на себя значительную часть работы по управлению компьютером, что делает возможным в простых случаях обходиться без особых знаний о деталях ее работы. Она сама пишет значительную часть текста программы: описания объектов, заголовки процедур и многое другое. Программисту остается только вписать необходимые строчки, определяющие индивидуальное поведение программы, которые система не в состоянии предвидеть. Но даже в этих случаях система сама указывает место для размещения таких строк. К объектно-ориентированным системам визуального проектирования относятся: Visual Basic, Delphi, С++ Builder, Visual С++. Это системы программирования самого высокого уровня.

VВА (Visual Basic for Application) является общей языковой платформой для приложений Microsoft Office (Ехсе1, Word, Power Point и др.). VВА соблюдает основной синтаксис и правила программирования языков Бейсик-диалектов. VBA помогает довольно сильно расширить возможности приложений за счет написания макросов — программ, предназначенных для автоматизации выполнения многих операций. VВА позволяет создавать объекты управления графического интерфейса пользователя, задавать и изменять свойства объектов, подключать к ним необходимый для конкретного случая программный код. С помощью VВА можно производить интеграцию между различными программными продуктами. Программы на языке VВА для приложений создаются двумя способами: в автоматическом режиме как результат построения клавишной макрокоманды или путем написания программного кода.
Языки программирования баз данных.

Эти языки отличаются от алгоритмических прежде всего своим функциональным назначением. При работе с базами данных (БД)наиболее часто выполняются следующие операции: создание, преобразование, удаление таблиц в БД; поиск, отбор, сортировка по запросам пользователя; добавление новых записей или модификация существующих; удаление записей и др. Для обработки больших массивов информации и выборки записей по определенным признакам был создан структурированный язык запросов SQL (Structured Query Language). Он был впервые создан фирмой IВМ в начале 70-х гг., назывался Structured English Query Language (SEQUEL) и предназначался для управления прототипом реляционной базы данных IВМ — System R. В дальнейшем SQL стал стандартом языка работы с реляционными базами данных, что зафиксировано американским национальным комитетом стандартов АNSI в 1986 г.

Практически в каждой СУБД имеется свой универсальный язык, ориентированный на ее особенности. Сегодня в мире ведущие производители СУБД: Microsoft (SQL Server), IВМ (DВ2), Огас1е, Software АG (Adabas), Informix и Sybase. Их продукты предназначены для совместной параллельной работы тысяч пользователей в сети, а базы данных могут храниться в распределенном виде на нескольких серверах. В Огас1е имеется встроенный язык PL/SQL, в Informix – INFORMIX 4GL, в Adabas – Natural и т.д.
Языки программирования для компьютерных сетей.

Появление и активное развитие компьютерных сетей стало причиной создания многочисленных версий популярных языков программирования, адаптированных для использования в сети. Отличительные особенности, присущие сетевым языкам: они являются интерпретируемыми. Интерпретаторы для них распространяются бесплатно, а сами программы - в исходных текстах. Такие языки получили название скрипт-языков.



НТМL (Нурег Техt Маrkup Language) — универсальный язык разметки гипертекста, используемый для подготовки Web-документов для сети Internet. Язык представляет собой набор элементарных команд форматирования текста, добавления графических объектов (рисунков), задания шрифтов и цвета, организации ссылок и таблиц. В соответствии с командами НТМL броузер отображает содержимое документа, команды языка не отображаются. В основе языка НТМL лежит механизм гипертекстовых ссылок, обеспечивающий связь одного документа с другим. В НТМL текст кодируется в ASCII и поэтому может быть создан и отредактирован в любом текстовом редакторе. Все Web-страницы написаны на НТМL или используют его расширение.

Реr1. В 80-х гг. Ларри Уолл разработал язык Реr1, который предназначался для эффективной обработки больших текстовых файлов, создания текстовых отчетов и управления задачами. В его состав входят многочисленные функции работы со строками, массивами, всевозможные средства преобразования данных, управления процессами, работы с системной информацией и др.

Тс1/Тk. В конце 80-х гг. Джон Аустираут придумал скрипт-язык Тс1 и библиотеку Тк.Тс1 — это попытка создания идеального скрипт-языка. Он ориентирован на автоматизацию рутинных операций и состоит из мощных команд, выполняющих обработку нетипизированных объектов.

VRML. В 1994 г. был создан язык VRML для организации виртуальных трехмерных интерфейсов в Интернете. Он ориентирован на описание разнообразных трехмерных образов, цвето-теневого освещения в текстовом виде и позволяет создавать различные сценарии миров, путешествовать по ним, «облетать» с разных сторон, вращаться в любых направлениях, масштабировать, управлять освещенностью и многое другое.
Языки моделирования.

При моделировании систем применяются формальные способы их описания — формальные нотации, с помощью которых можно представить объекты и взаимосвязи между ними в системе. Такие системы называют САSЕ-системами.




7. Этапы подготовки и решения задач на компьютере.

Компьютер предназначен для решения разнообразных задач: научно-технических, инженерных, разработки системного программного обеспечения, обучения, управления производственными процессами и т.д. В процессе подготовки и решения на компьютере научно-технических задач можно выделить следующие этапы:

1. Постановка задачи — формулируется цель решения задачи, подробно описывается ее содержание; проводится анализ условий, при которых решается поставленная задача, выявляется область определения входных параметров задачи.

2. Формальное построение модели задачи — предполагает построение модели с характеристиками, адекватными оригиналу, на основе какого-либо его физического или информационного принципа; анализируется характер и сущность величин, используемых в задаче.

3. Построение математической модели задачи — характеризуется математической формализацией задачи, при которой существующие взаимосвязи между величинами выражаются с помощью математических соотношений. Как правило, математическая модель строится с определенной точностью, допущениями и ограничениями.

4. Выбор и обоснование метода решения — модель решения задачи реализуется на основе конкретных приемов и методов решения. В большинстве случаев математическое описание задачи трудно перевести на машинный язык. Выбор и использование метода решения позволяет свести решение задачи к конкретному набору машинных команд. При обосновании метода решения рассматриваются вопросы влияния различных факторов и условий на конечный результат, в том числе на точность вычислений, время решения задачи на компьютере, требуемый объем памяти и др.

5. Построение алгоритма — на данном этапе составляется алгоритм решения задачи, в соответствии с выбранным методом решения. Процесс обработки данных разбивается на отдельные относительно самостоятельные блоки, определяется последовательность выполнения этих блоков.

6. Составление программы — алгоритм решения переводится на конкретный язык программирования.

7. Отладка программы — процесс устранения синтаксических и логических ошибок в программе. В процессе трансляции программы с помощью синтаксического и семантического контроля выявляются недопустимые конструкции и символы (или сочетания символов) для данного языка программирования. Компьютер выдает сообщение об ошибках в форме, соответствующей этому языку. Затем проверяется логика работы программы в процессе ее выполнения с конкретными исходными данными. Для этого используются специальные методы. Например, в программе выбираются контрольные точки, для них подбираются тестирующие примеры и вручную находятся значения в этих точках, которые затем и сверяются со значениями, получаемыми компьютером на этапе отладки. Кроме того, используются отладчики, выполняющие специальные действия на этапе отладки, такие как удаление, замена или вставка отдельных операторов или целых фрагментов программы, вывод промежуточных результатов, изменение значений заданных переменных и др.

8. Решение задачи на компьютере и анализ результатов. Теперь программу можно использовать для решения поставленной задачи. Первоначально выполняется многократное решение задачи на компьютере для различных наборов исходных данных. Получаемые результаты анализируются специалистом, поставившим задачу. Разработанная программа поставляется заказчику. К ней прилагается документация, включающая инструкцию по эксплуатации. В задачах другого типа некоторые этапы могут отсутствовать.

Например, проектирование программного обеспечения не требует построения математической модели.


ЗАКЛЮЧЕНИЕ.

В заключении подведем основные итоги по курсовой работе.



Алгоритм — точная конечная система правил, определяющая содержание и порядок действий над объектами, строгое выполнение которых дает решение поставленной задачи.

Существуют следующие способы описания алгоритма: словесное описание, псевдокод (описание структуры алгоритма на естественном, частично формализованном языке), блок-схема (описание алгоритма с помощью геометрических фигур с линиями-связями), программа (описание алгоритма на языке программирования).

В зависимости от условий и сложности поставленной задачи принято различать следующие алгоритмические конструкции: линейная (каждое действие алгоритма выполняется ровно один раз, после каждого i-ого действия следует i+1 действие); разветвляющаяся (с полным [если-то-иначе] или неполным [если-то] ветвлением) – обеспечивает выбор между двумя альтернативами; конструкция «Цикл» - некая, идущая подряд группа действий алгоритма (тело цикла) может выполняться несколько раз; рекурсивный (в процессе выполнения команд на каком-либо шаге прямо или косвенно обращается сам к себе).

При работе программа использует следующие типы данных: переменные (именованные объекты, которые могут изменять свое значение); константы (данные, значения которых не изменяются на протяжении работы программы).

Структура, объединяющая элементы одного типа данных называется массив – упорядоченная совокупность однотипных величин, имеющих общее имя, элементы которой адресуются порядковыми номерами (индексами). Массивы могут быть одномерными – с наличием у каждого элемента только одного индекса; двумерные (матрицы) – положение элементов определяется двумя координатами (по горизонтали и по вертикали).

Компьютерная программа представляет собой упорядоченную последовательность команд, предназначенную для управления компьютером. Практически все программы создаются с помощью языков программирования. Языки программирования имеют свой алфавит, словарный запас, грамматику, синтаксис, а также семантику.

Языком самого низкого уровня является Ассемблер; операторы этого языка близки к машинному коду. Такие языки программирования используют для написания небольших системных приложений, драйверов устройств, модулей стыковки.

Современное состояние языков программирования имеет следующую классификацию:



  • Процедурные (операционные и структурные) – основной командой является команда присвоения, предназначенная для определения и изменения содержимого памяти компьютера. Фундаментальная идея – использование памяти компьютера для хранения данных. Представители: Фортран (FORmula TRANslation), Кобол (COmmon Businnes Oriented Language), Алгол (ALGOrithmic Language), (Beginners All-purpose Symbolic Instruction Code) или сокращенно ВАS1С (Бейсик), ПЛ/1 (РL/1 – Programming Language One), Паскаль (Раsса1), АДА, С (Си).

  • Декларативные (функциональные и логические). Ключевым понятием в функциональных языках является выражение – представитель: Лисп (LISP, LISt Processing). Концепция логического программирования базируется на понятии отношение – представитель: Пролог (PROLOG, PROgramming in LOGic).

  • Объектно-ориентированные (объектные и визуальные). Основой является понятие объект. Пионером данного направления стал язык Смолтолк (Smolltolk). Современные языки: С++, JAVA. К объектно-ориентированным системам визуального проектирования относятся: Visual Basic, Delphi, C++ Builder, Visual C++.

Языки программирования баз данных: ведущие производители СУБД - Microsoft (SQL Server), IВМ (DВ2), Огас1е, Software АG (Adabas), Informix и Sybase.

Языки программирования для компьютерных сетей: НТМL (Нурег Техt Маrkup Language), Реr1, Тс1/Тk, VRML.



СПИСОК ЛИТЕРАТУРЫ.





  1. Б.В.Соболь [и др.] – Ростов н/Д: Феникс, 2006

  2. Информатика. Базовый курс./С.В.Симонович и др. - СПб.: Питер, 2001.

  3. Каймин В.А. Информатика: Учебник для вузов. - М.: Высшее образование, 1998.

  4. Каймин В.А., Касаев Б.С. Информатика.: Практикум на ЭВМ. Учебное пособие. - М.: ИНФРА-М, 2001.


<< предыдущая страница