Химия для любознательных. Основы химии и занимательные опыты - umotnas.ru o_O
Главная
Поиск по ключевым словам:
Похожие работы
Название работы Кол-во страниц Размер
Программа вступительных испытаний по химии Нижний Новгород 2011 I. 1 120.62kb.
Примерные вопросы для подготовки к экзамену по химии Модуль Общая... 1 33.76kb.
Рабочая программа по химии в 9 классе составлена на основе Примерной... 1 416.12kb.
Вопросы к экзамену по химии для студентов а и вт 1 59.01kb.
Методическая разработка Для направления 020100-Химия и специальности... 3 574.24kb.
Внеклассное мероприятие по химии «Эта удивительная химия» 1 102.24kb.
Программа по органической химии для студентов высших фармацевтических... 1 821.12kb.
Программа дисциплины «физическая химия» 1 80.79kb.
Устный журнал «Как развивалась химия…» 1 203.11kb.
Вопросы к зачету по дисциплине «Физическая и коллоидная химия» 1 42.39kb.
Программа по химии предмет и задачи химии. Место химии среди естественных... 1 109.03kb.
Ф. И. О. студента: Поляков Дмитрий Владимирович Рег номер 1 32.25kb.
Викторина для любознательных: «Занимательная биология» 1 9.92kb.

Химия для любознательных. Основы химии и занимательные опыты - страница №7/21

У металлов очень древняя история. Например, история меди насчитывает 7700 лет, а предметы из железа и стали были известны 4000 лет назад в Китае, Индии, Вавилоне и Ассирии. В отличие от металлов, синтетические материалы - пластмассы, синтетические эластомеры - каучуки и резины, химические волокна, силиконы - начали производить немногим более 50 лет назад. Несмотря на это, они во многих отношениях превосходят давно известные материалы. Правда, у каждого из них, как и у природных материалов, есть свои недостатки, и при выборе, разумеется, приходится их учитывать и сопоставлять с достоинствами. Главное преимущество пластмасс по сравнению с металлами заключается в том, что их свойства легче регулировать. Поэтому пластмассы быстрее и лучше можно приспособить к требованиям практики. К преимуществам пластмасс относятся также низкая плотность, отсутствие у большинства из них запаха и вкуса, высокая стойкость по отношению к атмосферной коррозии, к кислотам и щелочам. Кроме того, изделиям из пластмассы легко можно придать любую форму. Наконец, большинство пластмасс превосходно поддается крашению и обладает отличными электро- и теплоизоляционными свойствами. Зато устойчивость к высоким температурам и нередко прочность у них меньше, а тепловое расширение обычно больше, чем у металлов. Кроме того, некоторые пластмассы горючи.

ЗАМЕНИТЕЛЬ?


В тяжелые времена, в годы бедствий и потрясений создавались так называемые "эрзацы" - заменители отсутствующих веществ. Например, в первую мировую войну вместо тканей из шерсти и хлопка были предложены ткани из бумаги. Во время второй мировой войны появилось такое мыло из глины, у которого не было ничего общего с обычным мылом, кроме названия и формы кусков. Разумеется, это были очень плохие заменители.

Тогда синтетические материалы тоже должны были служить заменителями. Из-за отсутствия выбора часто приходилось использовать такие типы пластмасс, которые для данного случая не подходили или не были доведены до требуемого качества и достаточно проверены. Конечно, все это повредило репутации синтетических материалов. Однако в наши дни их уже нельзя рассматривать просто как заменители.

Правда, они и теперь часто применяются вместо природных материалов, но тогда, когда существенно превосходят их. Если вначале опыт работы с синтетическими материалами бывал неудачным, то причиной чаще всего было их неправильное использование. Многие инженеры старой школы считали новые материалы неполноценными. Во всех неудачах у них всегда был виноват, конечно, заменитель.

В наши дни практика заставила многих скептиков отказаться от своих прежних взглядов. Приведем лишь один пример. Вкладыши подшипников для сельскохозяйственных машин, для гребных валов, прокатных линий и вагонов сегодня могут изготавливаться из фенопластов. Они намного легче бронзовых или из сурьмянистого свинца - плотность фенопластов составляет приблизительно 1,7 г/см3, а бронзы - 8 г/см3. Кроме того, они долговечнее, и смазкой для них может служить вода. В прокатных станах вкладыши подшипников из фенопластов работают в 120 раз дольше, чем из сурьмянистого свинца.


В высокоразвитой химической промышленности ГДР производству синтетических материалов принадлежит особое место. Главное внимание уделяется изготовлению наиболее ценных типов пластмасс, а важнейшей задачей считается все более полное использование тех многообразных возможностей, которые предоставляет недавно созданная в ГДР нефтехимическая промышленность. Наряду с давно известными пластиками, служащими для изготовления предметов широкого потребления, промышленность выпускает все больше новых пластмасс специального назначения. В среднем 70—80 % стоимости всей выпускаемой в ГДР продукции приходится на долю материалов. Непрерывный научно-технический прогресс, автоматизация производства и повышение производительности труда — как сейчас, так и тем более в будущем — немыслимы без новых материалов. В самом деле, борьба за экономию материалов тесно связана с применением полимеров во всех отраслях народного хозяйства. Ведь пластмассы гораздо легче поддаются обработке, чем катаная сталь, и при их переработке получается меньше отходов. Но преимущество пластмасс не только в этом. Пластмассовые детали машин и аппаратов легче, устойчивее к коррозии и обычно дешевле. Можно не сомневаться в том, что в будущем соотношение между использованием пластмасс и конструкционной стали существенно изменится в пользу пластмасс. По самым осторожным прогнозам это соотношение по массе вместо 1 : 23 в наши дни к 1980 г. изменится до 1 :10.

ВЕЛИКАНЫ СРЕДИ МОЛЕКУЛ


В соответствии с государственным стандартом "пластмассами называются материалы, основной составной частью которых являются такие высокомолекулярные органические соединения, которые образуются в результате синтеза или же превращений природных продуктов. При переработке в определенных условиях они, как правило, проявляют пластичность и способность к формованию или деформации".

Молекулярная масса воды составляет 18 условных единиц, а виноградного сахара - 180. Хотя молекула виноградного сахара очень велика по сравнению с молекулой воды, ее еще нельзя назвать гигантской. Гигантские молекулы - химики называют их макромолекулами (от греческого makros - большой) - содержат от тысячи до нескольких миллионов атомов. Их относительную молекулярную массу нельзя выразить определенным числом, мы можем указать для нее лишь пределы.

Человек научился создавать макромолекулы вначале в лаборатории, а позднее - в промышленном масштабе из соединений простого строения - так называемых мономеров. Число молекул мономеров, которые соединяются друг с другом и образуют молекулу полимера, мы называем степенью полимеризации. Слово "полимер" образовано от греческих слов polys (много) и meros (часть). Физические свойства полимеров сильно зависят от степени полимеризации. Кроме того, они зависят и от того, как соединяются друг с другом молекулы мономеров. Образованные из них макромолекулы могут представлять собой прямые или разветвленные цепи, а также клубки или сети. Все эти типы полимеров показаны на рисунке.

Сверху мы видим прямую цепь, ниже - разветвленную цепь, еще ниже - клубок и сеть. При растяжении полимера значительная часть цепей в клубке выстраивается параллельно друг другу. Такой сдвиг молекул в отношении одной главной оси вызывает изменение прочности - она увеличивается по направлению растяжения. При нагревании цепи молекул таких пластмасс обычно легко сдвигаются относительно друг друга. При этом пластмассы размягчаются и приобретают текучесть. Такие пластмассы мы будем называть термопластами.

Напротив, если цепи атомов в молекулах полимера соединены между собой мостиками и образуют сетку, то даже при воздействии тепла сдвиг таких цепей относительно друг друга невозможен. Такие пластмассы называются реактопластами. (Другими словами, реактопласты — это такие пластмассы, которые получаются из низкомолекулярных мономеров, и отверждаются под действием тепла, катализаторов или отвердителей с образованием полимеров трехмерной структуры. Таким образом, при переработке в изделия реактопласты необратимо теряют способность переходить в вязкотекучее состояние. В отличие от них, при формовании термопластов не происходит отвердения, и они в изделии сохраняют способность вновь переходить в вязкотекучее состояние. В 1973 г. мировое производство пластмасс достигло 43 млн. т. Из них около 75 % приходилось на долю термопластов (полиэтилен, поливинилхлорид, полистирол и др.). В дальнейшем доля термопластов в общем производстве пластмасс будет еще больше увеличиваться, — Прим. перев.)

В ГДР их называют дуропластами (от латинского durus – твердый). В самом деле, из всех пластмасс тверже всего те, которые имеют сетку трехмерной структуры, т.е. такие, у которых соединение цепей происходит по всем трем осям координат. Эти пластмассы стойки и к действию растворителей.




ИССЛЕДУЕМ ПЛАСТМАССЫ


"За свою продукцию ручаюсь головой" - эти слова сегодня часто можно услышать на предприятиях. Однако готовую продукцию высокого качества можно изготовить только из безупречных исходных материалов. Поэтому пластмассы всегда подвергают очень тщательному испытанию. Результатами этого строгого экзамена интересуются обе стороны - и те, кто производят пластмассы, и те, кто занимаются их переработкой. Первые всегда стремятся улучшить качество выпускаемой продукции, а вторым важно выяснить, какие материалы можно использовать для тех или иных целей.

В число этих испытаний входят измерение прочности на растяжение, твердости, прочности на изгиб, эластичности, паро- и газопроницаемости, прочности к истиранию, плотности, водопоглощения, исследование поведения при нагревании, воздействии света и в электрическом поле. Наряду с этим важнейшую роль играет изучение стойкости пластмасс по отношению к различным химическим реактивам.

У читателя, вероятно, найдется образец какой-нибудь пластмассы для исследования. Сначала выясним, из чего она состоит, как называется и для чего используется. Ответить на эти вопросы не всегда легко. Некоторые сведения мы могли бы получить, определив химический состав. С этой целью нам понадобилось бы поместить в пробирку 100-200 мг исследуемого сухого образца и расплавить его вместе с металлическим натрием, нагревая пробирку почти до размягчения стекла. Плав мы могли бы потом растворить в воде и в полученном растворе обнаружить:

азот - при добавлении сульфата железа (II), хлорида железа (III) и разбавленной соляной кислоты (образование берлинской лазури);

серу - при действии пентацианонитрозилферрата(Ш), или нитропруссида натрия (фиолетовое окрашивание);

хлор - при действии нитрата серебра в присутствии азотной кислоты (осадок хлорида серебра, обнаружению мешают некоторые азотсодержащие соединения);

фосфор - при добавлении азотной кислоты, упаривании раствора и последующем действии молибдата аммония (желтый осадок).

Однако многим читателям металлический натрий недоступен. Кроме того, ввиду опасности работы с ним, начинающим химикам не стоит проводить анализ этим методом. Вместо этого ограничимся более простым определением хлора - пробой Бейльштейна, которая нам уже знакома. Для этого раскалим медную проволоку в несветящейся зоне пламени горелки Бунзена до исчезновения зеленого окрашивания. На конце этой проволоки внесем в пламя горелки пробу исследуемой пластмассы. Если она содержит хлор или другие галогены, то образуются летучие галогениды меди, которые окрашивают пламя в интенсивный зеленый цвет.

Для большинства обычно применяемых пластмасс нам удастся решить поставленную задачу даже в том случае, если мы ограничимся только определением плотности, температуры размягчения и плавления, пробой на сгорание, а также исследованием кислотности продуктов разложения и поведения пластмассы по отношению к некоторым химическим реактивам. Полученные данные сверим с приведенными в таблице "Свойства пластмасс".

Определение плотности

Взвесим образец пластмассы, не содержащий пузырей, определим его объем по вытеснению воды или путем непосредственного измерения и вычислим плотность (в г/см3), пользуясь формулой:

p = m/V

где m-масса образца, г; V-объем образца, см3.



В случае смесей различных типов пластмасс или пластмасс с добавками - наполнителями - полученные значения колеблются в некоторых пределах.

Проба на плавление

Сначала выясним, плавится ли исследуемая пластмасса вообще. Для этого внесем ее в струю горячего воздуха, нагретого горелкой, или нагреем исследуемый образец на металлической или асбестовой подставке. В зависимости от того, что будет происходить с пластмассой, мы сможем отнести ее к термо- или реактопластам. Правда, не исключено, что наш образец не относится ни к одной из этих групп. Об этом мы поговорим позднее.



Температура размягчения

Вставим пробы пластмассы - лучше всего полоски длиной 5-10 см и шириной 1 см - в железный тигель, заполненный сухим песком. Тигель постепенно нагреем маленьким пламенем горелки. В песок вставим термометр. Когда полоски согнутся, по показаниям термометра заметим температуру размягчения. Для измерения температуры размягчения можно использовать и химический стакан, заполненный маслом. (Осторожно! В горячее масло не должна попадать вода! Исключить опасность разбрызгивания!)

Для поливинилхлорида, у которого температура размягчения составляет 75-77 °С, и для полистирола с температурой размягчения 80-100 °С вместо масла можно обойтись водой.

Температура текучести

Аналогично можно определить и температуру текучести, т. е. тот интервал температуры, в котором пластмассы приобретают текучесть. Однако напомним, что некоторые пластмассы разлагаются раньше, чем достигается температура текучести.



Проба на сгорание

Возьмем тигельными щипцами образец пластмассы и поместим его ненадолго в верхнюю часть высокотемпературной зоны пламени горелки. Вынем пластмассу из пламени и посмотрим, будет ли она гореть дальше. При этом обратим внимание на цвет пламени; заметим, образуется ли копоть или дым, потрескивает ли огонь, плавится ли пластмасса с образованием капель. Ошибки в определении типа полимера могут возникать из-за того, что мы исследуем не чистую смолу, а с добавками-пластификаторами и наполнителями. К сожалению, свойства этих добавок иногда оказываются заметнее свойств чистого полимера.



Исследование продуктов разложения

В маленьких пробирках нагреем измельченные пробы различных пластмасс и обратим внимание на запах, цвет и реакцию на лакмусовую бумагу образующихся продуктов разложения. (Нюхать осторожно! Некоторые пластмассы, например политетрафторэтилен, образуют ядовитые продукты разложения.)



Химическая стойкость

Пробы пластмасс погружают в разбавленные и концентрированные растворы кислот и щелочей - на холоду или при нагревании, обрабатывают органическими растворителями и таким образом испытывают их на химическую стойкость. Для изучения набухания вырежем прямоугольный кусочек пластмассы и острым скальпелем сделаем тонкий срез. Полученную тонкую пленку раздвоим, как показано на рисунке. Половину этой пленки погрузим в пробирку с соответствующей жидкостью. Исследуем набухание в различных жидкостях: - в воде, кислотах, щелочах, бензоле, метилбензоле (толуоле) и др. Пробирки оставим по меньшей мере на 5 дней. (Учесть пожароопасность некоторых растворителей!) Чтобы жидкость меньше испарялась, заткнем пробирки кусочками ваты. В некоторых случаях, например для поливинилхлорида (ПВХ) в бензоле, мы обнаружим заметное увеличение той части полоски, которая находилась в растворителе. Если образец становится хрупким, то это скорее всего вызвано вымыванием пластификатора. Пластификаторами обычно служат сложные эфиры.




Химическое наименование

Техническое наименование (в ГДР)

Плотность, г/см3

Проба на плав-ление

Температура размягчения, 0С

Температура текучести, 0С

Проба на сгорание

Свойства продуктов разложения

Поведение в пламени

Окраска пламени

Примечание

Цвет (наличие или отсутствие)

Реакция

Запах

щелочная

кислая

Поливинилхлорид жесткий

Децелит Н, эскадур, экалон (прозрачный как стекло), винидур, поливинилхлорид Шкопау

1,38

+

75 – 77

160 – 180

Горит с трудом

Зеленоватое

Горит с разбрасыванием

Белые пары

-

+

HCl

Поливинилхлорид мягкий (пластифицированный)

Децелит W, экалит

1,30

+

-

140 – 160

То же

То же

Горит и после удаления пламени, с разбрасыванием

То же

-

+

HCl и пластифи-катор

Полистирол

Стирофлекс, стиропор, стирофан, полистирол BW (гранулированный), полистирол Р60, Р70

1,05 – 1,09

+

80 – 100

<160

Самовоспламеняется

Желтое, светящееся; коптящее

Плавится

Белые пары, тяжелее воздуха

-

-

Сладковатый цветочный, с оттенком бензола

Полиамид

Мирамид, дедерон, полиамид АН Шкопау, перфол

1,13 (для дедерона)

+

203 (для дедерона)

Около 203

Горит

Голубоватое; желтая кайма

Плавится, течет нитью

Коричневатый

+

-

Паленых волос

Полиэтилен

Эцеполен, миратен, полиэтилен Шкопау

0,92 – 0,96

+

105 – 130

120 – 160

-«-

Вначале голубоватое, потом желтое

Плавится, течет по каплям, капли горят

Белый

-

-

Парафина

Полиметакрилат

Пиакрил, пиафлекс

1,18

+

130 – 150

175 – 190

-«-

Желтое, слабо коптящее

Горит спокойно, с потрескиванием

Безцветный

В начале +

В конце +

Фруктовый, сладковатый

Поливинилацетат

Поливинилацетат Шкопау

1,16 – 1,18

+

40 – 180

-

-«-

Голубоватое с желтой верхушкой; коптящее

Плавится, капает, капли не горят

Белый

-

+

Уксуса

Полиэфир

Полиэстер Шкопау

-

+

Разлагается, темнеет




-«-

Светящееся; коптящее

Обугливается

Бело-коричневатый

-

-

Сладковатый

Полиуретан

-

-

+

Разлагается, темнеет (пе-реработка при 40 – 100 0С)




-«-

Светящееся

Течет по каплям

То же

+

-

Резкий, неприятный

Политетрафторэтилен

Гейдефлон, PTFE

2,1 – 2,3

+

327 разложение при нагревании выше 300

-

-

-

-

-

-

+

Резкий, HF и HCl; пары ядовиты

Фенопласты

Бакелит, хавег, пластакол, пластадур, пластапор, пластарезин, сонрезин, дифен, амоколл

1,25 – 1,7

-

-

-

Горит с трудом

Желтое

Взрывается! Трескается; горит с разбрызгиванием

Различный

+

-

Фенола, наполнителя и метаналя (формаль-дегида)

Аминопласты

Меладур, пиатерм, диди, шпрелакарт, шпрелафлекс, пиадурол, гидрофен, меладурол, меллакол

-

-

-

-

Горит с трудом, иногда горючи наполнители

Желтоватое

Белые края; обугливается; горит с потрескиванием

Белый

+

-

Аминов (запах рыбы), аммиака и метаналя
<< предыдущая страница   следующая страница >>