Химия для любознательных. Основы химии и занимательные опыты - umotnas.ru o_O
Главная
Поиск по ключевым словам:
Похожие работы
Название работы Кол-во страниц Размер
Программа вступительных испытаний по химии Нижний Новгород 2011 I. 1 120.62kb.
Примерные вопросы для подготовки к экзамену по химии Модуль Общая... 1 33.76kb.
Рабочая программа по химии в 9 классе составлена на основе Примерной... 1 416.12kb.
Вопросы к экзамену по химии для студентов а и вт 1 59.01kb.
Методическая разработка Для направления 020100-Химия и специальности... 3 574.24kb.
Внеклассное мероприятие по химии «Эта удивительная химия» 1 102.24kb.
Программа по органической химии для студентов высших фармацевтических... 1 821.12kb.
Программа дисциплины «физическая химия» 1 80.79kb.
Устный журнал «Как развивалась химия…» 1 203.11kb.
Вопросы к зачету по дисциплине «Физическая и коллоидная химия» 1 42.39kb.
Программа по химии предмет и задачи химии. Место химии среди естественных... 1 109.03kb.
Ф. И. О. студента: Поляков Дмитрий Владимирович Рег номер 1 32.25kb.
Викторина для любознательных: «Занимательная биология» 1 9.92kb.

Химия для любознательных. Основы химии и занимательные опыты - страница №6/21

Получим железную пыль


В 10 мл воды растворим около 3 г лимонной кислоты и добавим половину чайной ложки тонкого порошка железа или очень мелких опилок. Будем нагревать содержимое пробирки до тех пор, пока железо не растворится. По мере надобности необходимо добавлять воду. Затем нагреем до полного испарения воды, закроем пробирку тампоном из стеклянной ваты и продолжим интенсивный нагрев до тех пор, пока пробирка не покроется темным налетом. Удалим ватный тампон, и проволокой выгребем образовавшиеся крошки тонкодисперсного железа на огнеупорную подложку. Часто они начинают сами раскаляться на воздухе. Железо, полученное термическим разложением лимоннокислого железа, способно к самовоспламенению (пирофорное железо), что может привести к пожару.

Никель по тому же рецепту


Никель также можно получить в виде тонкого порошка, разлагая соли органических кислот. Но так как никель плохо растворяется в органических кислотах, получим метанат (или формиат) никеля, то есть никелевую соль метановой (или муравьиной) кислоты, следующим образом.

Из раствора сульфата никеля осадим, добавляя соду, карбонат никеля, который при взаимодействии с водой (гидролиз) частично переходит в гидроксид никеля. Осадок быстро отфильтруем и растворим при нагревании в 30—50%-ной метановой кислоте. При этом удаляется угольная кислота, и образуется метанат никеля Ni(HCOO)2, который выкристаллизовывается при увеличении концентрации раствора. (Осторожно! Метановая кислота едкая, а летучие пары ядовиты. Опыт проводить под тягой или на открытом воздухе!)

Кроме этого, можно приготовить соль с помощью реакции двойного обмена. Растворим 5 г сульфата никеля в воде и добавим раствор 4 г метаната (формиата) натрия. Соли взаимодействуют по схеме:

NiSO4 + 2NaHCOO  Ni(HCOO)2 + Na2SO4

При увеличении концентрации раствора сначала выделяется метанат никеля; легкорастворимый сульфат натрия останется в маточном растворе.

Прокаливая соль в пробирке, получим легкие крошки порошка никеля. Благодаря своей большой поверхности тонкодисперсные металлы химически очень активны. Например, порошок никеля является незаменимым катализатором при присоединении водорода (гидрирование) органическими молекулами. Эта реакция описана на стр. 263 применительно к отверждению жиров. Пероксид водорода (как мы можем легко проверить) каталитически разлагается тонкодисперсными металлами.

В технике металлы часто получают в виде порошков (порошковая металлургия).

ИЗ МЕТАЛЛУРГИЧЕСКИХ РЕЦЕПТОВ

Окружающие нас металлические предметы редко состоят из чистых металлов. Только алюминиевые кастрюли или медная проволока содержат около 99 % чистого элемента. В большинстве же других случаев мы имеем дело со сплавами (смесями многих, металлов), к которым иногда добавлены и неметаллы. Так, различные виды железа и стали содержат наряду с металлическими добавками незначительные количества углерода, которые оказывают решающее влияние на механическое и термическое поведение сплавов.

Общий рецепт для получения сплава: сначала расплавляют компонент с наивысшей точкой плавления и добавляют затем остальные компоненты. По этой простой схеме можно получить несколько сплавов.

Сплавы свинца

Сначала сплавим свинец с оловом и получим сплав, примерно соответствующий составу припоя.

Поместим в тигель несколько граммов свинца и расплавим его. Затем добавим олово и хорошо перемешаем расплав железной проволокой. Возьмем тигель щипцами и поставим его в цветочный горшок, на одну треть наполненный сухим песком. Термометр, опущенный в тигель, покажет температуру 300—360 0С. Во время охлаждения каждые полминуты будем отмечать температуру и заносить ее в подготовленную заранее таблицу, где в левом столбце отмечается время, а в правом — температура. После полного затвердевания еще несколько минут проследим за ходом охлаждения и затем прекратим опыт.

Тот, кто хочет получить полное представление о термическом поведении сплава, должен начать опыты с чистого свинца и затем перейти к добавлению сначала небольших, а затем все увеличивающихся, точно взвешенных количеств олова. Таким образом можно снова использовать предыдущие сплавы.



Найденную взаимосвязь представим графически. На листе миллиметровой бумаги отложим на оси абсцисс (горизонтально) время, а на оси ординат (вертикально) — температуру. На рисунке вверху приведена полученная таким образом кривая. Чистый свинец равномерно охлаждается до 327 °С. Затем появляется площадка, так как металл застывает, высвобождая то тепло, которое было поглощено при плавлении. После полного застывания опять наблюдается равномерное остывание, которому соответствует на графике почти прямая линия.


При увеличении содержания олова сплавы затвердевают при все более низкой температуре. Начало затвердевания выражается в более или менее отчетливом перегибе кривой охлаждения. Только при 183,3 °С опять наблюдается (независимо от состава сплава) область постоянной температуры. После этого расплав полностью затвердевает и равномерно охлаждается.

Объяснить это своеобразное поведение сплавов можно следующим образом. Из богатого свинцом сплава выделяется сначала чистый свинец (область от первого изгиба до площадки). Так продолжается до тех пор, пока еще жидкий сплав не достигнет состава, который обладает самой низкой точкой плавления. Этот сплав, называемый эвтектическим, выделяется в виде единого целого и является причиной появления площадки при 183 °С. Его состав: 73,9% (ат.) олова и 26,1% (ат.) свинца, то есть 16,2 г олова приходится на 10 г свинца. Если мы сразу приготовим сплав этого состава, то он затвердеет при 183 °С, а на кривой охлаждения не будет точек перегиба. В сплавах с более высоким содержанием олова выделяется сначала олово, а затем опять — эвтектический состав. Из множества кривых охлаждения получают полную термическую диаграмму состояния (смотри рисунок), которая характеризует важнейшие свойства сплавов. Она может быть существенно усложнена, например иметь несколько эвтектических точек.

Наши сплавы можно использовать в качестве припоя. Для этой цели лучше всего подходят сплавы с содержанием свинца 50—70 % (масс).

По следующим рецептам можно получить легкоплавкие сплавы.



Сплав Ньютона: 31 массовая часть свинца, 19 частей олова и 50 частей висмута. Температура плавления 95 °С.

Сплав Вуда: 25 частей свинца, 12,5 частей олова, 50 частей висмута и 12,5 частей кадмия (кадмий лучше всего получить в гальванической мастерской). Температура плавления 60 °С.

Ложка из такого сплава расплавится, если ею помешать горячий кофе. Раньше это демонстрировали в качестве шутливого опыта. Перемешанный таким образом напиток ядовит из-за солей свинца и висмута!

В нашей маленькой печи мы можем получить немного латуни. Для этого расплавим медь с помощью бунзеновской или, лучше, стеклодувной горелки и затем добавим кусочки цинка; можно и сразу поместить кусочки обоих металлов в тигель. Латунь 60 содержит, например, 60 весовых частей мели и 40 весовых частей цинка (В СССР так называемые двойные латуни тоже маркируются по содержанию меди. Марка Л80, например, означает, что в латуни содержится 79— 81 % меди, а остальное — цинк. — Прим. перев.).

Для литья цинка под давлением применяют сплав, содержащий около 94% цинка, 4% алюминия и 2% меди.



Закалка стали

Самое большое значение среди всех сплавов имеют стали различных составов. Простые конструкционные стали состоят из железа относительно высокой чистоты с небольшими (0,07—0,5%) добавками углерода, а легированные стали получают, добавляя к железу кремний, медь, марганец, никель, хром, вольфрам, ванадий и молибден.

Мы удовлетворимся некоторыми простыми опытами. Для экспериментов по закалке возьмем отслужившие лезвия безопасной бритвы. Применим не только простые стальные лезвия, но и лезвия из нержавеющей легированной стали, такие как «Polsilver» или «Chroma» (Можно воспользоваться лезвием «Ленинград». — Прим. перев.). Лезвия изготовлены из очень мягкого материала, ими нельзя, например, поцарапать стекло. Если взять лезвие пинцетом или щипцами и подержать в несветящемся пламени бунзеновской горелки, то поверхность его станет сначала желтой, затем голубой и наконец серой. Это в результате нагревания появились цвета побежалости в тонких пленках железной окалины Fe3O4. Если светло-красное раскаленное лезвие быстро погрузить в холодную воду, то слой, образовавшийся в окислительной атмосфере, отделится в виде блесток. Сталь станет хрупкой и легко сломается при сгибании. Но зато повысится ее твердость, так что можно будет без труда поцарапать стекло. Чтобы избавиться от хрупкости, сохранив большую твердость, после быстрого охлаждения сталь «отпускают», короткое время нагревая ее при температуре 220—700 °С в зависимости от качества и целей применения.

Если на закрытой плитке или на масляной бане (Осторожно!) нагреть лезвия до 230—330 °С, мы опять увидим сначала желтый, затем коричневый, красный, голубой и, наконец, серый цвета побежалости. Часто граммофонные иглы и лезвия безопасных бритв обрабатывают «отпуском» до желтого цвета при 230 °С, часовые стрелки — до светло-голубого при 310 °С, пилы и ножи — до василькового при 295 °С.

Исключительные механические свойства при отличной коррозионной стойкости имеют высоколегированные, и потому дорогие, хромоникелевые стали. Самую распространенную из них мы уже упоминали на стр. 87 как сталь 18/8. Входящий в ее состав хром, образуя пассивирующую поверхностную пленку (подробнее см. в разделе «Небольшой курс электрохимии металлов»), сильно повышает коррозионную стойкость, а добавка никеля улучшает механические свойства,

В нескольких опытах убедимся прежде всего в том, что пробы из нержавеющей стали (нержавеющие лезвия, сломанные ножи) почти не разрушаются сильной азотной или серной кислотой. Однако соляная кислота, вследствие частичного разрушения защитного слоя, подвергает сталь сквозной коррозии. Чтобы перевести в раствор небольшое количество металла, обработаем в пробирке стальную пробу царской водкой. (Царская водка состоит из 3 объемных частей концентрированной соляной и 1 части концентрированной азотной кислоты. Внимание! Смесь очень агрессивна, пары ядовиты!). Затем осторожно разбавим раствор водой примерно в пятикратном размере, нейтрализуем, постепенно добавляя раствор соды, и проведем описанные выше реакции обнаружения хрома, никеля и молибдена. Часто нержавеющие стали содержат около 2 % молибдена — это дополнительно увеличивает твердость изготовленных из них инструментов.

Мы предоставляем самому читателю подвергнуть коррозионным испытаниям железные или стальные пробы различного происхождения и обработки. Для этой цели частично погрузим их в водные растворы, которые находятся на дне стеклянных сосудов (например, стеклянных банок). Рекомендуем проверить действие обычной и дистиллированной воды, соленой воды, растворов хлорида магния, аммиака, сернистой кислоты, а также разбавленных минеральных и органических кислот. В малоагрессивных жидкостях ржавчина интенсивнее всего образуется вблизи поверхности раствора, потому что здесь самое высокое содержание кислорода. Сильное коррозионное воздействие оксида серы (IV) является важнейшей проблемой при очистке промышленных отработанных газов, которые выделяются в процессе переработки угля и руд и содержат SO2.

НЕБОЛЬШОЙ КУРС ЭЛЕКТРОХИМИИ МЕТАЛЛОВ

Мы уже познакомились с электролизом растворов хлоридов щелочных металлов и получением металлов с помощью расплавов Сейчас попробуем на нескольких несложных опытах изучить некоторые закономерности электрохимии водных растворов, гальванических элементов, а также познакомиться с получением защитных гальванических покрытий. Электрохимические методы применяются в современной аналитической химии, служат для определения важнейших величин теоретической химии. Наконец, коррозия металлических предметов, которая наносит большой урон народному хозяйству, в большинстве случаев является электрохимическим процессом.



РЯД НАПРЯЖЕНИЯ МЕТАЛЛОВ

Основополагающим звеном для понимания электрохимических процессов является ряд напряжения металлов. Металлы можно расположить в ряд, который начинается с химически активных и заканчивается наименее активными благородными металлами: Li, Rb, К, Ва, Sr, Са, Mg, Al, Be, Mn, Zn, Cr, Ga, Fe, Cd, Tl, Co, Ni, Sn, Pb, H, Sb, Bi, As, Cu, Hg, Ag, Pd, Pt, Au.

Так выглядит, по новейшим представлениям, ряд напряжений для важнейших металлов и водорода. (О ряде напряженно уже упоминалось. Здесь этот ряд представлен в том виде, который соответствует 1 н. водным растворам солей металлов при температуре 25 0С и нормальном атмосферном давлении. Учитываются также и некоторые другие условия: концентрация кислоты или щелочи, способность к комплексообразованию и пр. В связи с тем, что не нее Эти условия могут быть строго выдержаны, приведенный ряд носит ориентировочный характер. — Прим. ред.)

Если из двух любых металлов ряда изготовить электроды гальванического элемента, то на предшествующем в ряду материале появится отрицательное напряжение. Величина напряжения (разность потенциалов) зависит от положения элемента в ряду напряжении и от свойств электролита.

Сущность ряда напряжения установим из нескольких простых опытов, для которых нам понадобятся источник тока и электрические измерительные приборы.

Металлические покрытия, "деревья" и "ледяные узоры" без тока

Растворим около 10 г кристаллического сульфата меди в 100 мл воды и погрузим в раствор стальную иглу или кусочек железной жести. (Рекомендуем предварительно до блеска зачистить железо тонкой наждачной шкуркой.) Через короткое время железо покроется красноватым слоем выделившейся меди. Более активное железо вытесняет медь из раствора, причем железо растворяется в виде ионов, а медь выделяется в виде металла. Процесс продолжается до тех пор, пока раствор находится в контакте с железом. Как только медь покроет всю поверхность железа, он практически прекратится. В этом случае образуется довольно пористый слой меди, так что защитные покрытия без применения тока получать нельзя.

В следующих опытах опустим в раствор сульфата меди небольшие полоски цинковой и свинцовой жести. Через 15 минут вытащим их, промоем и исследуем под микроскопом. Мы различим красивые, похожие на ледяные, узоры, которые в отраженном свете имеют красную окраску и состоят из выделившейся меди. Здесь также более активные металлы перевели медь из ионного в металлическое состояние.

В свою очередь, медь может вытеснять металлы, стоящие ниже в ряду напряжений, то есть менее активные. На тонкую полоску листовой меди или на расплющенную медную проволоку (предварительно зачистив поверхность до блеска) нанесем несколько капель раствора нитрата серебра. Невооруженным взглядом можно будет заметить образовавшийся черноватый налет, который под микроскопом в отраженном свете имеет вид тонких игл и растительных узоров (так называемых дендритов).

Чтобы выделить цинк без тока, необходимо применить более активный металл. Исключая металлы, которые бурно взаимодействуют с водой, находим в ряду напряжений выше цинка магний. Несколько капель раствора сульфата цинка поместим на кусок магниевой ленты или на тонкую стружку электрона. Раствор сульфата цинка получим, растворив кусочек цинка в разбавленной серной кислоте. Одновременно с сульфатом цинка добавим несколько капель денатурата. На магнии через короткий промежуток времени заметим, особенно под микроскопом, выделившийся в виде тонких кристалликов цинк.

В общем, любой член ряда напряжения может быть вытеснен из раствора, где он находится в виде иона, и переведен в металлическое состояние. Однако при испытании всевозможных комбинаций, нас может постичь разочарование. Казалось бы, если полоску алюминия погрузить в растворы солей меди, железа, свинца и цинка, на ней должны выделяться эти металлы. Но этого, однако, не происходит. Причина неудачи кроется не в ошибке в ряду напряжений, а основана на особом торможении реакции, которое в данном случае обусловлено тонкой оксидной пленкой на поверхности алюминия. В таких растворах алюминий называют пассивным.



ЗАГЛЯНЕМ ЗА КУЛИСЫ

Чтобы сформулировать закономерности протекающих процессов, мы можем ограничиться рассмотрением катионов, а анионы исключить, так как они сами в реакции не участвуют. (Правда, на скорость осаждения влияет вид анионов.) Если для простоты предположить, что и выделяющийся и растворенный металлы двухвалентные, то можно записать:

Me1 + Me22+  Ме12+ + Ме2

причем для первого опыта Ме1 = Fe, Me2 = Сu. Итак, процесс состоит в обмене зарядами (электронами) между атомами и ионами обоих металлов. Если отдельно рассматривать (в качестве промежуточных реакций) растворение железа или осаждение меди, то получим:

Fe  Fe2+ + 2е-

Сu2+ + 2е-  Сu

Теперь рассмотрим случай, когда металл погружен в воду или в раствор соли, с катионом которой обмен невозможен из-за его положения в ряду напряжений. Несмотря на это, металл стремится перейти в раствор в виде иона. При этом атом металла отдает два электрона (если металл двухвалентный), поверхность погруженного в раствор металла заряжается по отношению к раствору отрицательно, а на границе раздела образуется двойной электрический слой. Эта разность потенциалов препятствует дальнейшему растворению металла, так что процесс вскоре приостанавливается. Если в раствор погрузить два различных металла, то они оба зарядятся, но менее активный — несколько слабее, в силу того, что его атомы менее склонны к отщеплению электронов. Соединим оба металла проводником. Вследствие разности потенциалов поток электронов потечет от более активного металла к менее активному, который образует положительный полюс элемента. Протекает процесс, при котором более активный металл переходит в раствор, а катионы из раствора выделяются на более благородном металле.

Сущность гальванического элемента

Проиллюстрируем теперь несколькими опытами приведенные выше несколько абстрактные рассуждения (которые к тому же представляют собой грубое упрощение).

Сначала наполним химический стакан вместимостью 250 мл до середины 10 %-ным раствором серной кислоты и погрузим в нее не слишком маленькие куски цинка и меди. К обоим электродам припаяем или приклепаем медную проволоку, концы которой не должны касаться раствора.

Пока концы проволоки не соединены друг с другом, мы будем наблюдать растворение цинка, которое сопровождается выделением водорода. Цинк, как следует из ряда напряжения, активнее водорода, поэтому металл может вытеснять водород из ионного состояния. На обоих металлах образуется двойной электрический слой. Разность потенциалов между электродами проще всего обнаружить с помощью вольтметра. Непосредственно после включения прибора в цепь стрелка укажет примерно 1 В, но затем напряжение быстро упадет. Если подсоединить к элементу маленькую лампочку, потребляющую напряжение 1 В, то она загорится — сначала довольно сильно, а затем накал станет слабым.

По полярности клемм прибора можно сделать вывод, что медный электрод является положительным полюсом. Это можно доказать и без прибора, рассмотрев электрохимию процесса. Приготовим в маленьком химическом стакане или в пробирке насыщенный раствор поваренной соли, добавим примерно 0,5 мл спиртового раствора индикатора фенолфталеина и погрузим оба замкнутых проволокой электрода в раствор. Около отрицательного полюса будет наблюдаться слабое красноватое окрашивание, которое вызвано образованием на катоде гидроксида натрия.

В других опытах можно помещать в ячейку различные пары металлов и определять возникающее напряжение. Например, магний и серебро дадут особенно большую разность потенциалов благодаря значительному расстоянию между ними ряду напряжений, а цинк и железо, наоборот, очень маленькую, менее десятой доли вольта. Применяя алюминий, мы не получим из-за пассивации практически никакого тока.

Все эти элементы, или, как говорят электрохимики, цепи, имеют тот недостаток, что при съемке тока на них очень быстро падает напряжение. Поэтому электрохимики всегда измеряют истинную величину напряжения в обесточенном состоянии с помощью метода компенсации напряжения, то есть сравнивая его с напряжением другого источника тока.

Рассмотрим процессы в медно-цинковом элементе несколько подробнее. На катоде цинк переходит в раствор по следующему уравнению:

Zn  Zn2+ + 2е-

На медном аноде разряжаются ионы водорода серной кислоты. Они присоединяют электроны, поступающие по проволоке от цинкового катода и в результате образуются пузырьки водорода:

+ + -  Н2

Через короткий промежуток времени медь покроется тончайшим слоем пузырьков водорода. При этом медный электрод превратится в водородный, а разность потенциалов уменьшится. Этот процесс называют поляризацией электрода. Поляризацию медного электрода можно устранить, добавив в ячейку после падения напряжения немного раствора бихромата калия. После этого напряжение опять увеличится, так как бихромат калия окислит водород до воды. Бихромат калия действует в этом случае как деполяризатор.

На практике применяют гальванические цепи, электроды которых не поляризуются, или цепи, поляризацию которых можно устранить, добавив деполяризаторы.

В качестве примера неполяризуемого элемента рассмотрим элемент Даниэля, который раньше часто использовали как источник тока. Это тоже медно-цинковый элемент, но оба металла погружены в различные растворы. Цинковый электрод помещается в пористой глиняной ячейке, наполненной разбавленной (примерно 20 %-ной) серной кислотой. Глиняную ячейку подвешивают в большом стакане, в котором находится концентрированный раствор сульфата меди, а на дне — слой кристаллов сульфата меди. Вторым электродом в этом сосуде служит цилиндр из медного листа.

Этот элемент можно изготовить из стеклянной банки, имеющейся в продаже глиняной ячейки (в крайнем случае используем цветочный горшок, закрыв отверстие в дне) и двух подходящих по размеру электродов.

В процессе работы элемента цинк растворяется с образованием сульфата цинка, а на медном электроде выделяются ионы меди. Но при этом медный электрод не поляризуется и элемент дает напряжение около 1 В. Собственно, теоретически напряжение на клеммах составляет 1,10 В, но при съеме тока мы измеряем несколько меньшую величину, вследствие электрического сопротивления ячейки.

Если мы не снимем ток с элемента, нужно вытащить цинковый электрод из раствора серной кислоты, потому что иначе он будет растворяться с образованием водорода.

Схема простой ячейки, для которой не требуется пористой перегородки, показана на рисунке. Цинковый электрод расположен в стеклянной банке наверху, а медный — вблизи дна. Вся ячейка наполнена насыщенным раствором поваренной соли. На дно банки насыплем горсть кристаллов сульфата меди. Образующийся концентрированный раствор сульфата меди будет смешиваться с раствором поваренной соли очень медленно. Поэтому при работе элемента на медном электроде будет выделяться медь, а в верхней части ячейки будет растворяться цинк в виде сульфата или хлорида.

Сейчас для батарей используют почти исключительно сухие элементы, которые более удобны в употреблении. Их родоначальником является элемент Лекланше. Электродами служат цинковый цилиндр и угольный стержень. Электролит представляет собой пасту, которая в основном состоит из хлорида аммония. Цинк растворяется в пасте, а на угле выделяется водород. Чтобы избежать поляризации, угольный стержень опускают в полотняный мешочек со смесью из угольного порошка и пиролюзита. Угольный порошок увеличивает поверхность электрода, а пиролюзит действует как деполяризатор, медленно окисляя водород. Правда, деполяризующая способность пиролюзита слабее, чем у упоминавшегося ранее бихромата калия. Поэтому при получении тока в сухих элементах напряжение быстро падает, они «утомляются» вследствие поляризации. Только через некоторое время происходит окисление водорода пиролюзитом. Таким образом, элементы «отдыхают», если некоторое время не пропускать ток. Проверим это на батарейке для карманного фонарика, к которой подсоединим лампочку. Параллельно лампе, то есть непосредственно на клеммы, подключим вольтметр. Сначала напряжение составит около 4,5 В. (Чаще всего в таких батарейках последовательно включены три ячейки, каждая с теоретическим напряжением 1,48 В.) Через некоторое время напряжение упадет, накал лампочки ослабеет. По показаниям вольтметра мы сможет судить, как долго батарейке нужно отдыхать.

Особое место занимают регенерирующие элементы, известные под названием аккумуляторы. В них протекают обратимые реакции, и их можно перезаряжать после разрядки элемента, подключив к внешнему источнику постоянного тока.

В настоящее время наиболее распространены свинцовые аккумуляторы; в них электролитом служит разбавленная серная кислота, куда погружены две свинцовые пластины. Положительный электрод покрыт пероксидом свинца PbO2, отрицательный представляет собой металлический свинец. Напряжение на клеммах составляет примерно 2,1 В. При разрядке на обеих пластинах образуется сульфат свинца, который опять превращается при зарядке в металлический свинец и в пероксид свинца.

НАНЕСЕНИЕ ГАЛЬВАНИЧЕСКИХ ПОКРЫТИЙ

Осаждение металлов из водных растворов с помощью электрического тока является процессом, обратным электролитическому растворению, с которым мы познакомились при рассмотрении гальванических элементов. Прежде всего исследуем осаждение меди, которое используют в медном кулонометре для измерения количества электричества.



Металл осаждается током

Отогнув концы двух пластин из тонкой листовой меди, подвесим их на противоположных стенках химического стакана или, лучше, маленького стеклянного аквариума. Клеммами прикрепим к пластинам провода.

Электролит приготовим по следующему рецепту: 125 г кристаллического сульфата меди, 50 г концентрированной серной кислоты и 50 г спирта (денатурата), остальное — вода до 1 литра. Для этого сначала растворим сульфат меди в 500 мл воды, затем осторожно, маленькими порциями добавим серную кислоту (Нагревание! Жидкость может разбрызгиваться!), после этого вольем спирт и доведем водой до объема 1 л.

Готовым раствором наполним кулонометр и включим в цепь переменное сопротивление, амперметр и свинцовый аккумулятор. С помощью сопротивления отрегулируем ток таким образом, чтобы его плотность составила 0,02—0,01 А/см2 поверхности электродов. Если медная пластина имеет площадь 50 см2, то сила тока должна находиться в пределах 0,5—1 А.

Через некоторое время на катоде (отрицательный электрод) начнет выделяться светло-красная металлическая медь, а на аноде (положительный электрод) медь будет переходить в раствор. Чтобы очистить медные пластины, будем пропускать ток в кулонометре около получаса. Затем вытащим катод, осторожно высушим его с помощью фильтровальной бумаги и точно взвесим. Установим в ячейке электрод, замкнем цепь с помощью реостата и будем поддерживать постоянную силу тока, например 1 А. Через час разомкнем цепь и опять взвесим высушенный катод. При токе 1 А за час работы его масса увеличится на 1,18 г.

Следовательно, количество электричества, равное 1 ампер-часу, при прохождении через раствор может выделить 1,18 г меди. Или в общем: выделившееся количество вещества прямо пропорционально количеству прошедшего через раствор электричества.

Чтобы выделить 1 эквивалент иона, необходимо пропустить через раствор количество электричества, равное произведению заряда электрода е на число Авогадро na:

еNA= 1,6021 * 10-19 * 6,0225*1023 = 9,65*104 А*с*моль-1

Эта величина обозначается символом F и называется в честь первооткрывателя количественных законов электролиза числом Фарадея (точное значение F 96 498 А с*моль-1). Следовательно, для выделения из раствора данного числа эквивалентов nэ через раствор следует пропустить количество электричества равное Fnэ А*с*моль-1.

Иначе говоря,



It = Fnэ

Здесь I—ток, tвремя прохождения тока через раствор.

В разделе «Основы титрования» уже было показано, что число эквивалентов вещества nэ равно произведению числа молей на валентность:

nэ = n*Z

Следовательно: I*t = F*n*Z

В данном случае Z—заряд ионов (для Ag+ Z = 1, для Cu2+ Z = 2, для Al3+ Z = 3 и т. д.). Если выразить число молей в виде отношения массы к мольной массе (п = т/М), то мы получим формулу, которая позволяет рассчитать все процессы, происходящие при электролизе:

I*t=F*m*Z/M

По этой формуле можно вычислить ток:

I = F*m*Z/(t*M)=9,65*104*1,18*2/(3600*63,54) А*с*г*моль/с*моль*г=0,996 А

Если ввести соотношение для электрической энергии Wэл



Wэл=U*I*t и Wэл/U=I*t

то, зная напряжение U, можно вычислить:



Wэл=F*m*Z*U/M

Можно также рассчитать, сколько времени необходимо для электролитического выделения определенного количества вещества или сколько вещества выделится за определенное время.

Во время опыта плотность тока необходимо поддерживать в заданных пределах. Если она будет меньше 0,01 А/см2, то выделится слишком мало металла, так как будут частично образовываться одновалентные ионы меди. При слишком высокой плотности тока сцепление покрытия с электродом будет слабым и при извлечении электрода из раствора оно может осыпаться.

На практике гальванические покрытия на металлах применяют прежде всего для защиты от коррозии и для получения зеркального блеска.

Кроме того, металлы, особенно медь и свинец, очищают с помощью анодного растворения и последующего выделения на катоде (электролитическое рафинирование).

Чтобы покрыть железо медью или никелем необходимо сначала тщательно очистить поверхность предмета. Для этого отполируем ее отмученным мелом и последовательно обезжирим разбавленным раствором едкого натра, водой и спиртом. Если предмет покрыт ржавчиной, надо протравить его заранее в 10—15 %-ном растворе серной кислоты.

Очищенное изделие подвесим в электролитической ванне (маленький аквариум или химический стакан), где оно будет служить в качестве катода.

Раствор для нанесения медного покрытия содержит в 1 л воды 250 г сульфата меди и 80—100 г концентрированной серной кислоты (Осторожно!). В данном случае анодом будет служить медная пластинка. Поверхность анода примерно должна быть равна поверхности покрываемого предмета. Поэтому надо всегда следить, чтобы медный анод висел в ванне на такой же глубине, как и катод.

Процесс будем проводить при напряжении 3—4 В (две аккумуляторные батареи) и плотности тока 0,02—0,4 А/см2. Температура раствора в ванне должна составлять 18—25 0С.

Обратим внимание на то, чтобы плоскость анода и покрываемая поверхность были параллельны друг другу. Предметы сложной формы лучше не использовать. Варьируя длительность электролиза, можно получать медное покрытие разной толщины.

Часто прибегают к предварительному меднению для того, чтобы на этот слой нанести прочное покрытие из другого металла. Особенно часто это применяется при хромировании железа, никелировании цинкового литья и в других случаях. Правда, для этой цели используют очень ядовитые цианидные электролиты.

Для приготовления электролита для никелирования в 450 мл воды растворим 25 г кристаллического сульфата никеля, 10 г борной кислоты или 10 г цитрата натрия. Цитрат натрия можно приготовить самим, нейтрализовав раствор 10 г лимонной кислоты разбавленным раствором едкого натра или раствором соды. Анодом пусть будет пластина никеля возможно большей площади, а в качестве источника напряжения возьмем аккумулятор. Величину плотности тока с помощью переменного сопротивления будем поддерживать равной 0,005 А/см2. Например, при поверхности предмета 20 см2 надо работать при силе тока 0,1 А. После получаса работы предмет будет уже отникелирован. Вытащим его из ванны и протрем тканью. Впрочем, процесс никелирования лучше не прерывать, так как тогда слой никеля может запассивироваться и последующее никелевое покрытие будет плохо держаться.

Чтобы достичь зеркального блеска без механической полировки, введем в гальваническую ванну так называемую блескообразующую добавку. Такими добавками служат, например, клей, желатина, сахар. Можно ввести в никелевую ванну, например, несколько граммов сахара и изучить его действие.

Чтобы приготовить электролит для хромирования железа (после предварительного меднения), в 100 мл воды растворим 40 г ангидрида хромовой кислоты СrО3 (Осторожно! Яд!) и точно 0,5 г серной кислоты (ни в коем случае не больше!). Процесс протекает при плотности тока около 0,1 А/см2, а в качестве анода используется свинцовая пластина, площадь которой должна быть несколько меньше площади хромируемой поверхности.

Никелевые и хромовые ванны лучше всего слегка подогреть (примерно до 35 0С). Обратим внимание на то, что электролиты для хромирования, особенно при длительном процессе и высокой силе тока, выделяют содержащие хромовую кислоту пары, которые очень вредны для здоровья. Поэтому хромирование следует проводить под тягой или на открытом воздухе, например на балконе.

При хромировании (а в меньшей степени и при никелировали) не весь ток используется на осаждение металла. Одновременно выделяется водород. На основании ряда напряжений следовало бы ожидать, что металлы, стоящие перед водородом, вообще не должны выделяться из водных растворов, а напротив должен был бы выделяться менее активный водород. Однако здесь, как и при анодном растворении металлов, катодное выделение водорода часто тормозится и наблюдается только при высоком напряжении. Это явление называют перенапряжением водорода, и оно особенно велико, например, на свинце. Благодаря этому обстоятельству может функционировать свинцовый аккумулятор. При зарядке аккумулятора вместо РbО2 на катоде должен бы возникать водород, но, благодаря перенапряжению, выделение водорода начинается тогда, когда аккумулятор почти полностью заряжен.



4. ХИМИЯ УГЛЕРОДА

ЗАГЛЯНЕМ В ПРОШЛОЕ

Нашей планете уже около 5 миллиардов лет. Вначале она, вероятно, была раскаленным газовым шаром. Позднее в результате конденсации газов возникли металлы, камень, а потом и вода. К этому времени лишь некоторые газы окружали Землю, образуя ее первоначальную атмосферу. Однако прошло несколько миллиардов лет, а планета все еще был мертва. Только около миллиарда лет назад из неживой материи появились простейшие формы жизни.

В те далекие времена в атмосфере не было чистого кислорода, но было много углекислого газа (диоксида углерода). Растения - точно так же, как и теперь - строили из него и из влаги, содержащейся в почве, сложные соединения углерода. При этом в атмосферу выделялся свободный кислород. Так постепенно образовалась современная атмосфера, содержащая много кислорода и очень мало углекислого газа.

Соединения углерода, которые накапливались в растениях ранних эпох, большей частью подверглись превращениям под влиянием анаэробных бактерий. Из остатков отмерших растений образовались торф и каменный уголь. Этому процессу способствовало высокое давление минеральных отложений, которые постепенно осаждались на остатках растений. Движение земной коры, связанное с образованием гор, также благоприятствовало появлению угля, поскольку при этом повышались давление и температура. Признаки обильного и повсеместного растительного покрова нашей планеты особенно отчетливо обнаруживаются в каменном угле той эпохи, которая началась приблизительно 400 миллионов лет назад и длилась около 55 миллионов лет. Разумеется, эти растения отличались от современных. Судя по отпечаткам на каменном угле, в лесу тогда преобладали гигантские папоротники и плауны. По остаткам в современных образцах угля можно получить ясное представление о растительном и животном мире того времени.

Нефть и природный газ возникали на дне огромных озер и морей, где было необычайно много водорослей и водных животных. Погибая, они погружались на дно и без доступа воздуха, под влиянием бактерий превращались в гниющий гл. При гниении выделялся ядовитый сероводород, губительно действующий на остальные живые организмы. Из органических веществ возникали вначале жирные кислоты, а позднее - нефть и природный газ. Особенно благоприятными условиями для таких процессов отличался пермский период палеозойской эры. Именно с тех пор существуют многие из крупных месторождений нефти.

На территории, где в наши дни находится ГДР, не образовывалось больших запасов каменного угля и нефти. Небольшие запасы угля обнаружены в Цвиккау и Фрейтале вблизи Дрездена. Нефть и природный газ удалось найти лишь в последние годы в результате планомерного бурения скважин в Тюрингии, Бранденбурге и Мекленбурге. Управление народных предприятий нефтяной промышленности в Стендале получило задание освоить эти, хотя и не очень богатые, но все же выгодные месторождения. Большая часть нефти для химической промышленности ГДР поступает из Советского Союза по нефтепроводу «Дружба» протяженностью более 2000 км, который подходит к городам Шведту и Лёйне.

От 40 до 60 миллионов лет в наших широтах преобладал теплый субтропический климат. Благодаря теплу и высокой влажности в этот период, который называется третичным, возникли обильные заболоченные леса. Из хвойных деревьев чаще всего встречались секвойи, болотный кипарис и разные виды сосны. Смешанный лес третичного периода украшали лиственные породы-пальмы, коричные лавры и камфарные деревья, магнолии, каштаны и дубы. Одновременно появился богатый животный мир, причем большую долю его составляли млекопитающие. Однако болотистая почва лесов третичного периода была благоприятной средой и для жизни насекомых, птиц, крокодилов и змей. Из остатков погибших растений и животных образовался тот самый бурый уголь, который в настоящее время используется во многих отраслях народного хозяйства. Он служит одним из важнейших видов сырья для химической промышленности.

Бензин и бытовой газ, растворители, пластмассы и красители, новые лекарства и духи - все продукты органической химии рождаются из этого сырья. За многие миллионы лет природа накопила богатейшие запасы углерода и его соединений. И если сейчас мы все еще вынуждены сжигать значительную часть этого сырья для получения энергии, то это, в сущности, неразумное расточительство. Будем надеяться, что атомная энергия вскоре позволит нам использовать уголь и нефть только как сырье для химической промышленности.


БОЛОТНЫЙ ГАЗ

И сейчас в болотах гниют растения. Гниющий ил можно найти в стоячей воде пруда или вблизи от берега медленно текущего ручья. Происходящие при этом химические превращения подобны тем процессам, с которых начиналось образование угля и нефти. Проверим это с помощью опыта.



Получим болотный газ

Принесем из пруда немного ила. Можно взять вместо него и землю со дна болота. Вместе с илом или землей там же наберем воды. Этим илом заполним на одну треть большую стеклянную банку из-под консервов. После этого доверху нальем в банку болотной воды. Сверху укрепим стеклянную воронку, а к ней куском резинового шланга присоединим короткую стеклянную трубку с оттянутым концом. Выход из воронки закроем с помощью зажима на резиновом шланге. Прибор выдержим несколько дней в достаточно теплом месте, например около плиты или печки. Нужно только иметь в виду, что гниение сопровождается неприятным запахом.

Постепенно образуются пузырьки газа, заполняющие воронку. После этого можно с осторожностью приоткрыть зажим и тотчас поджечь выделяющийся газ. Горение обусловлено, в основном, тем, что в состав болотного газа входит метан.

Метан - первое в ряду соединение углерода. Он содержит только углерод и водород. Формула метана СН4. В его молекуле четыре атома водорода связаны с одним атомом углерода.

Однако изображенная здесь формула не дает полного представления о пространственном строении молекулы метана. Исследования показали, что все четыре атома водорода находятся в вершинах правильного тетраэдра, то есть расположены одинаково относительно атома углерода, который находится в центре.

Метан получается не только при гниении. Много метана содержится в смеси газов, которая образуется при сухой перегонке угля. Кроме того, он является главной составной частью многих природных газов, а также побочным продуктом переработки нефти. В настоящее время метан служит важнейшим сырьем для получения водорода, оксида углерода СО и других веществ. При неполном сгорании метана получается сажа (углерод в тонкоизмельченном состоянии), которая используется, в частности, как наполнитель в производстве резины.




ОСНОВНЫЕ ПОНЯТИЯ ОРГАНИЧЕСКОЙ ХИМИИ

Углерод конечно, нельзя отнести к числу наиболее распространенных химических элементов. В земной коре его всего лишь 0,12 %. Но от всех остальных элементов он отличается исключительным разнообразием химических соединений. Число известных в настоящее время соединений углерода более чем вдвое превышает количество соединений всех остальных элементов, вместе взятых.

Такое своеобразие углерода объясняется особыми способностями его атомов к образованию химических связей. Как правило углерод четырехвалентен. Его атомы могут присоединяться друг к другу с образованием более или менее длинных цепей а также колец. Остающиеся при этом свободные единицы валентности легко насыщаются водородом. В результате получаются углеводороды. С простейшим из них — метаном — мы уже познакомились. Следующий, более сложный углеводород называется этаном. Его молекула содержит два атома углерода и шесть атомов водорода. Присоединение третьего атома углерода и насыщение свободных валентностей водородом приводит к образованию пропана с формулой C3H8. Следующий углеводород с четырьмя атомами углерода называется бутаном и имеет состав С4Н10. Так же можно составить все более длинные углеродные цепи. Сейчас известны члены ряда с более чем 100 атомами углерода. Углеводороды от метана до бутана при нормальных условиях газообразны. Начиная с пентана у которого пять атомов углерода, они представляют собой жидкости. Соединения, содержащие 17 и больше атомов углерода, при комнатной температуре являются твердыми веществами.

Углеводороды метан, этан, пропан, бутан и т. д. образуют ряд соединений, очень близких друг к другу по строению и химическим свойствам. В таблице "Ряд алканов" указаны названия и формулы важнейших членов этого ряда. Очевидно, что каждое последующее вещество отличается по составу от предыдущего наличием дополнительной группы СН2. Новому общая формула углеводородов с п атомами углерода СnН2n+2. Таким образом, число атомов водорода в молекуле на 2 больше, чем удвоенное число атомов углерода. Эти два дополнительных атома водорода находятся по концам углеродной цепи. Такой ряд соединений называется гомологическим рядом. Названия отдельных членов приведенного ряда углеводородов оканчиваются суффиксом «ан», и все вместе они называются алканами.


Ряд алканов

Число атомов углерода

Брутто-формула

Название

Число атомов углерода

Брутто-формула

Названия

1

CH4

Метан

7

C7H16

Гептан

2

C2H6

Этан

8

C8H18

Октан

3

C3H8

Пропан

9

C9H20

Нонан

4

C4H10

Бутан

10

C10H22

Декан

5

C5H12

Пентан

п

CnH2n+2

Алкан

6

C6H14

Гексан










Жидкие и твердые алканы содержатся, главным образом, в нефти, а также в смоле, полученной из бурого угля. Алканы преимущественно с шестью — десятью атомами углерода, например октан, входят в состав бензина. Следующие за ними в ряду жидкие алканы — главная составная часть дизельного топлива и смазочных масел. Смесь твердых углеводородов этого ряда получила название парафин.

Известны алканы не только с прямой, но и с разветвленной углеродной цепью. Например, для углеводорода С4Н10 возможны два варианта строения:



Для следующего за ним углеводорода С5Н12 возможны уже три структуры:



ЭТЕН - НЕНАСЫЩЕННЫЙ УГЛЕВОДОРОД

В алканах все свободные валентности атомов углерода насыщены атомами водорода. Поэтому их называют еще насыщенными углеводородами, В отличие от них, ненасыщенные углеводороды содержат меньше водорода. Свободные валентности соседних атомов углерода взаимодействуют в них друг с другом и образуют двойные или тройные связи. В структурных формулах такие связи изображаются двумя или тремя черточками между соответствующими атомами углерода. Очевидно, что ненасыщенные углеводороды, если расположить их в порядке увеличения числа атомов углерода, тоже образуют гомологические ряды. Простейшие и в то же время наиболее важные в технике ненасыщенные углеводороды имеют в молекуле одну двойную или тройную связь. В первом случае они называются алкенами, а во втором - алкинами.

Первые представители этого ряда - этен (этилен) (Н2С=СН2) и этин (ацетилен) (НССН). Этен и этин являются важнейшими промежуточными продуктами в технологии органического синтеза. Оба эти газа в настоящее время производятся во всем мире в огромных количествах путем каталитической переработки углеводородов нефти. Кроме того, большое значение имеет способ получения этина из карбида кальция и воды.

Изучение свойств ненасыщенных углеводородов начнем с этена, который легко можно получить из спирта и серной кислоты.

Соберем простой прибор. Для этого понадобятся две пробирки. К одной из них подберем пробку с двумя отверстиями и вставим в нее изогнутую стеклянную трубку и термометр со шкалой до 250 °С. Все соединения должны быть достаточно плотными, чтобы образующийся газ мог выходить только через трубку.

В пробирку поместим 2 мл денатурированного спирта и осторожно, малыми порциями, добавим 5 мл концентрированной серной кислоты (только в защитных очках!). При этом смесь очень сильно разогреется, и мы сразу же почувствуем приятный запах - это выделяется этен, пока в малом количестве. Можно добавить в пробирку еще 1-2 г мелкого чистого песка, чтобы ускорить реакцию. Однако можно этого и не делать.

Во вторую пробирку нальем 5-10 мл 10%-ного раствора соды (карбоната натрия) и добавим несколько капель раствора перманганата калия. Раствор должен получиться интенсивно фиолетовым, но не слишком темным. Он называется реактивом Байера (В советской химической литературе способ определения строения непредельных соединений путем их окисления разбавленным раствором перманганата калия получил название реакции Вагнера. Эта реакция была открыта Е.Е. Вагнером в 1887 году и описана в «Журнале Русского физико-химического общества» за 1888 г., т. 20, стр. 72 – Прим. перев.)

Теперь соберем прибор и будем нагревать первую пробирку горелкой Бунзена до тех пор, пока термометр, погруженный в смесь спирта с серной кислотой, не покажет 150-170 °С.

По стеклянной трубке отводится газообразный этен (теперь мы легко узнаем его по приятному запаху). Пропустим его через реактив Байера. Вскоре раствор обесцветится и одновременно выделятся коричневые хлопья оксида марганца (IV).

Если найдется немного бромной воды, можно разбавить ее водой в соотношении 1:1 и через полученную бурую жидкость пропустить этен. (Осторожно! Пары брома действуют на глаза и дыхательные пути). (Об опасности работы с бромом см. стр. 218. Места, обожженные бромом, следует тщательно протереть бензином до отсутствия запаха брома, а затем втереть в кожу глицерин. Немедленно после ожога бром можно смыть также бензолом или 10 %–ным раствором тиосульфата (гипосульфита) натрия. Последний продается в магазинах фототоваров. – Прим. перев.)

Окраска бромной воды исчезнет. После этого можно поджечь этен, все еще выделяющийся из изогнутой стеклянной трубки. Он горит светящемся, слегка коптящим пламенем.

Ненасыщенные углеводороды, в противоположность насыщенным, легко вступают в химические реакции. Так, в нашем опыте этен окислялся кислородом из перманганата калия, а перманганат калия при этом восстанавливался. Так же, как правило, ведут себя по отношению к реактиву Байера и другие ненасыщенные углеводороды. Реакционная способность этих веществ объясняется тем, что их двойные или тройные связи расщепляются с образованием простых связей. При этом за счет свободных валентностей присоединяются атомы или группы атомов, например кислород или бром.

Уравнения реакций:

СН2=СН2 + ½ О2 + Н2О  НО-СН2-СН2-ОН

СН2=СН2 + Br2  Br-CH2-CH2-Br

Применение этена и этина (ацетилена) в промышленности обусловлено тем, что, в отличие от алканов, они обладают высокой реакционной способностью. Именно благодаря ей на основе этена и этина можно построить множество различных органических соединений.


ОБНАРУЖЕНИЕ ЭЛЕМЕНТОВ В ОРГАНИЧЕСКИХ ВЕЩЕСТВАХ

Большинство органических соединений состоит преимущественно из углерода и водорода. Уже знакомые нам углеводороды содержат только эти два элемента. В остальных же органических соединениях, со многими из которых мы познакомимся позже, содержатся еще один или несколько других элементов, чаще всего кислород, галогены (хлор, бром, йод), азот и сера.

Приведенные ниже простые опыты во многих случаях пригодны для качественного определения азота, галогенов и серы.

Обнаружение азота


Чтобы выяснить, есть ли в веществе азот, пробу греют в пробирке с избытком натронной извести. Если ее нет, можно заменить ее смесью гидроксида натрия (едкого натра) с избытком негашеной извести. Проследим только, чтобы в верхней части пробирки не осталось приставших частиц извести. Заткнем пробирку кусочком ваты, а на него положим увлажненную полоску красной лакмусовой бумаги. Пробирку нагреем на горелке Бунзена (маленьким пламенем) - сначала слабо, потом сильнее. Синее окрашивание индикаторной бумаги указывает на присутствие азота. Определение основано на том, что содержащийся в органических веществах связанный азот при нагревании с натронной известью (или еще по одному способу - с концентрированной серной кислотой) во многих случаях превращается в аммиак.

Обнаружение галогенов


Во многих случаях галогены в органических соединениях можно обнаружить с помощью пробы Бейльштейна. Возьмем не слишком тонкую медную проволоку без изоляции, зачистим ее и загнем один конец петелькой. В петле укрепим кусочек пористой керамики ("кипелку"). Прокалим этот конец проволоки в несветящейся зоне пламени горелки, пока не исчезнет зеленая окраска пламени. Затем погрузим петельку в исследуемую жидкость или поместим на нее пробу твердого вещества. Если теперь снова внести проволоку в несветящуюся зону пламени, то присутствие галогена обнаруживается по зеленому (иод) или голубовато-зеленому (хлор, бром) окрашиванию пламени. Правда, эта проба очень чувствительна. Поэтому часто галоген обнаруживается даже в том случае, когда исследуемое вещество загрязнено малым количество содержащей галоген примеси. Некоторые соединения (муравьиная и бензойная кислоты, различные неорганические вещества) мешают определению, так как они сами окрашивают пламя в зеленый цвет.

Обнаружение серы


Для обнаружения серы обычно прокаливают пробу с металлическим натрием. При этом сера переходит в сульфид, который обнаруживают с помощью нитропруссида натрия. Мы выберем другой способ, чтобы обойтись без труднодоступного и опасного натрия.

На кончике шпателя возьмем пробу исследуемого вещества и поместим ее в маленькую фарфоровую чашку. Добавим немного концентрированной или лучше дымящей азотной кислоты и сильно нагреем чашку. Делать это нужно в вытяжном шкафу или на открытом воздухе. При этом кислота улетучивается. К остатку еще раз добавим азотную кислоту и снова выпарим. Растворим остаток в воде и при необходимости отфильтруем раствор. Если в пробе исследуемого вещества содержалась сера, то при смешивании полученного раствора с раствором хлорида бария выпадет осадок нерастворимого сульфата бария.


С помощью этих реакций можно испытать на содержание азота, серы или хлора самые разнообразные органические вещества. Попробуйте исследовать, например, жидкость для выведения пятен, средства для борьбы с молью и другими вредителями, остатки лекарств в домашней аптечке, кусочек рыбы, образцы шерсти, различных пластмасс и т. д.

Кислород в органических соединениях, как правило, определяется косвенным методом. Для этого находят процентное содержание всех остальных элементов и вычитают его из 100%. Основателем количественного анализа соединений углерода - элементного анализа - был Либих (1803 - 1873). С тех пор элементный анализ непрерывно совершенствовался и в наши дни достиг высокого уровня. Сейчас можно точно определить процентное содержание различных элементов при наличии лишь 1 мг вещества. Благодаря этому удалось выяснить состав очень редких природных веществ, например гормонов, стимуляторов роста и красителей, придающих окраску бабочкам.

Зная состав исследуемого вещества и определив его молекулярную массу, можно установить брутто-формулу. В конечном счете цель химика-органика состоит в том, чтобы точно выяснить структурную формулу, т. е. установить строение. Для этого он должен обстоятельно изучить химические свойства вещества, то есть его поведение по отношению к различным реагентам. Необходимо исследовать продукты его превращений - расщепления, термического разложения и т. д. Часто для того, чтобы надежно установить строение сложного соединения, необходима упорная работа в течение многих лет (Примером может служить почти двадцатилетняя работа (с 1865 по 1883 г) выдающегося немецкого химика Байера с сотрудниками, в результате которой удалось выяснить строение природного красителя индиго. В последние годы наряду с классическими методами все большее значение приобретают новые, обычно менее трудоемкие, физические методы установления строения органических соединений. Для ознакомления с достоинствами и недостатками тех и других методов рекомендуем прочитать статью В.Р.Полищука «Состязание с Адольфом Байером» в журнале «Химия и жизнь» № 9 за 1972 год – Прим. перев.) Для многих известных соединений углерода эта задача не решена до сих пор.

В настоящее время успешно расшифрованы очень сложные структуры белков и нуклеиновых кислот. Последние играют важную роль в передаче наследственных признаков и воспроизведении белков. Например, удалось не только выяснить точное строение, но и полностью осуществить синтез сложного белка - инсулина, недостаток которого, как известно, приводит к сахарной болезни. Выяснение точного расположения органических оснований в гигантских молекулах дезоксирибонуклеиновой кислоты (ДНК) дает ключ к познанию механизма передачи генетической информации. Таким образом, стирается граница между органической химией и биологией клетки. Возникшая на стыке наук молекулярная биология в будущем, несомненно, позволит сознательно изменять наследственные признаки биологических объектов.


УГОЛЬ - КОКС - СМОЛА - ГАЗ

Уголь в том состоянии, в каком он находится в природе, не годится для непосредственного использования в химической промышленности. Его нужно предварительно облагородить, превратив в как можно более чистые углерод и углеводороды.

Один из самых крупных потребителей угля - металлургия. В доменных печах уголь служит одновременно топливом и восстановителем для оксидных руд. Но при использовании только что добытого (так называемого сырого) каменного или бурого угля печи загрязнялись бы смолой. Поэтому раньше для выплавки чугуна применяли только очень чистый древесный уголь. Лишь к началу XIX в. научились коксовать каменный уголь и использовать в доменном процессе получаемый кокс.

Химической промышленности для получения углеводородов и других органических соединений нужны кокс, смола (побочный продукт коксования) и газы, получаемые при коксовании угля. Коксовые газы служат, кроме того, ценным горючим. Об этом свидетельствует, в частности, и наш повседневный опыт использования, газа в быту.

Германская Демократическая Республика располагает очень богатыми запасами бурого угля, тогда как каменный уголь ей приходится большей частью покупать за рубежом. Поэтому коксохимическая промышленность ГДР основана, главным образом, на переработке бурого угля.

Сырой бурый уголь содержит 45-55 % воды. Он не годится на топливо, поскольку при его сжигании большая часть тепловой энергии бесполезно расходуется на испарение воды. При высушивании на воздухе содержание воды в угле понижается до 15-20 %, а брикеты бурого угля содержат воды еще меньше - от 10 до 18 %. Сырой уголь поступает на переработку только в виде брикетов.

В результате сухой перегонки, то есть при нагревании без доступа воздуха с улавливанием выделяющихся летучих веществ, брикеты превращаются в кокс, смолу и газ. Применяются два способа такой переработки бурого угля. Первый, более старый способ, при котором бурый уголь нагревают только до 500-600 °С называется полукоксованием. При таких условиях ценные углеводороды улетучиваются. Остаток – полукокс - получается недостаточно прочным и поэтому непригоден для металлургии. Его перерабатывают с целью получения углеводородов. В отличие от полукоксования, способ высокотемпературного коксования, разработанный химиками Билкенротом и Раммлером, позволяет производить такой кокс, который можно использовать для выплавки чугуна в специальных низкошахтных печах.

Наряду с использованием в металлургии буроугольный высокотемпературный кокс все шире применяют в других отраслях промышленности в качестве ценного сырья и топлива.

Коксование каменного угля и высокотемпературное коксование бурого угля требуют температур порядка 1000°С и более. Поэтому провести такой опыт нам не удастся. Но мы можем осуществить полукоксование бурого угля. Можно провести и сухую перегонку древесины, которая, хотя и ограниченно, но еще применяется в промышленности ГДР (В СССР в 70-е годы сухой перегонке (пиролизу) подвергалось около 7 млн м3 древесины в год, главным образом с целью получения древесного угля и древесной смолы, причем масштабы производства возрастали – Прим. перев.). С нее мы и начнем, потому что этот опыт проще. Кроме того, перегонка древесины позволит нам лучше разобраться в сущности других, сходных с ней процессов.
ПОСТРОИМ УСТАНОВКУ ПОЛУКОКСОВАНИЯ

Сухую перегонку древесины и полукоксование бурого угля можно провести с очень малыми количествами веществ - даже в пробирке. Таким образом, с основами процесса можно ознакомиться при наличии хотя бы самого простого оборудования. В этом случае нам понадобится установка для перегонки.

Однако, чтобы дистиллята хватило для дальнейшей работы, сосуд для перегонки должен быть не менее 1 л. Таким образом, прежде всего нам нужно достать и приспособить для работы подходящий сосуд. Лучше всего подойдет металлическая реторта, которая может оказаться в школьной химической лаборатории. Но можно использовать и любой другой закрытый стальной сосуд - лишь бы в нем было отверстие, закрывающееся не слишком большой пробкой. Годятся, например, сварные сосуды из листового железа, маленькие газовые баллоны, не очень длинные обрезки труб с заваренным дном или жестяные банки. Можно даже взять старый эмалированный кофейник. В крышке его надо просверлить отверстие и подобрать к нему пробку. Кроме того, придется попросить сварщика наглухо приварить крышку к корпусу.

Если постараться, наверняка можно найти что-нибудь подходящее среди металлолома или отходов механической мастерской. Вероятно, в этом смогут помочь и на том предприятии, где вы проходите производственную практику.

Подобранный сосуд перед первым опытом нужно тщательно отмыть горячей водой, отскрести ершом и песком, так как остатки бензина или других горючих жидкостей могут во время опыта внезапно привести к пожару. Чтобы избежать опасности, вначале проверим также сосуд на устойчивость к нагреванию. Сильным пламенем - на плите или паяльной грелкой - нагреем его до красного каления (оттенок должен быть темно-красным). Если после этого в сосуде не появится трещин и герметичность швов не нарушится, то он годится в качестве перегонного куба.

Затем подберем к отверстию сосуда подходящую пробку. В нее нужно вставить стеклянную трубку, по которой будут отводиться летучие продукты перегонки. Пробка должна быть достаточно устойчивой к высокой температуре. Сосуд типа баллона лучше всего закрыть резиновой пробкой, а нижнюю поверхность ее защитить от нагревания шайбой - металлической или из асбестового картона. В шайбе, конечно, должно быть отверстие для стеклянной трубки - такого же диаметра, как и в пробке. Кроме того, чтобы защитить боковую поверхность, соприкасающуюся с раскаленным металлом, пробку нужно обмотать тонкой полоской из листового алюминия или другого мягкого и устойчивого к нагреванию до 500 °С материала.

Если отверстие перегонного куба шире, чем у баллона, например когда используется обрезок трубы, запаянный с одного конца, то можно закрыть его тщательно подогнанной деревянной пробкой конической формы. Такую пробку нетрудно сделать самому. Нижнюю поверхность ее тоже необходимо защитить асбестовой шайбой, а боковую - обмоткой. Правда, одну и ту же деревянную пробку удастся использовать лишь несколько раз. Перед каждым опытом ее придется подгонять к отверстию, осторожно постукивая по ней молотком. Стеклянную трубку нужно уплотнить в отверстии деревянной пробки с помощью кусочка резинового шланга.

Некоторые читатели, вероятно, смогут предложить и свои собственные усовершенствования. Но в любом случае необходимо вначале проверить полностью собранную установку, чтобы исключить возможность утечки горючих газов и паров в тех местах, где соединения недостаточно надежны. Для этого проведем "холостой опыт", т. е. опыт с пустым, не заполненным углем или древесиной перегонным кубом.

В качестве перегонного куба в крайнем случае годится колба из тугоплавкого стекла, но ее можно нагревать только до 500 °С. Кроме того, после опыта колба настолько загрязнится, что ее едва ли удастся хорошо отмыть.

Теперь нам понадобится мощный источник тепла, позволяющий нагреть куб до требуемой температуры. Процесс осуществляется полностью только при температуре около 500 °С, то есть при нагревании железа до красного каления. В крайнем случае можно нагревать до 350-400 °С, однако при этом процесс происходит лишь частично. Тепла, которое дает обычная горелка Бунзена, для этого не хватит, потому что оно расходуется на всю относительно большую поверхность перегонного куба. Стальной сосуд вместимостью около 1 л можно довести до требуемой температуры хотя бы в нижней его части путем длительного нагревания на кухонной газовой плите как можно более сильным пламенем. Можно нагревать и паяльной горелкой – в начале при полностью открытом подводе газа без подачи воздуха, а затем большим пламенем при умеренной поступлении воздуха. Наконец, подойдет и плита, которую топят углем. В этом случае тоже необходимо сильно нагревать сосуд непосредственно голым пламенем. Если сосудом для полукоксования служит стеклянная колба, то рекомендуется поставить ее в большую кастрюлю, дно которой покрыто слоем песка высотой около 1 см. Тогда колба не должна разбиться.

В качестве холодильника лучше всего взять обыкновенную, не слишком тонкую стеклянную трубку, плотно обвитую спиралью из тонкой свинцовой трубки. Через свинцовый змеевик во время опыта нужно непрерывно пропускать воду.

Ни холодильник Либиха (прямой), ни шариковый холодильник применять в установке для полукоксования не стоит: они так сильно загрязнятся, что их потом не отмыть. По той же причине в качестве приемника возьмем не слишком дорогую широкогорлую коническую колбу (колбу Эрленмейера) или молочную бутылку на 250 мл. Закроем приемник резиновой пробкой с двумя отверстиями. В одно из них должна входить охлаждаемая стеклянная трубка, выходящая из перегонного куба. В другое отверстие вставим более тонкую, согнутую под прямым углом стеклянную трубку для отвода горючих газов и паров.

Приемник поместим в баню, через которую во время опыта будем все время пропускать холодную воду. Теперь, когда все приготовления закончены - для этого, разумеется, пришлось потрудиться - приступим к первому опыту.
Сухая перегонка древесины

Лучшая древесная смола получается из как можно более сухой буковой древесины. Из других лиственных пород образуются более или менее подобные продукты, тогда как древесина хвойных пород из-за высокого содержания в ней природной смолы дает при перегонке смолу несколько иного состава.

Лучше всего нам удастся воспроизвести перегонку буковой древесины в промышленности, если мы возьмем тщательно высушенные куски дерева из старой мебели. Попробуем, например, использовать для этой цели остатки старого прабабушкиного комода, который отец только что разломал и выбросил. Кусок дерева измельчим - расколем и распилим его на кубики с длиной ребра около 1 см или щепки размером 1,5-2 см - и заполним ими свой перегонный куб.

Теперь соберем установку и включим нагрев и охлаждение. Уже через довольно короткий промежуток времени, осторожно вдыхая пары, мы почувствуем на выходе из трубки для отвода газа специфический запах паленой древесины. Этот запах, пожалуй, нельзя назвать неприятным. Вскоре в приемнике появляются первые капли дистиллята. Из отводной трубки выходят только газы [в основном, диоксид углерода (углекислый газ) и метан]. Если поднести к отверстию этой трубки горящую спичку, их можно поджечь. В дальнейшем коксовые газы будут все время гореть сами светящимся пламенем. Поскольку они имеют сильный запах и содержат диоксид углерода, помещение необходимо все время хорошо проветривать.

Перегонка занимает не менее часа. В конце опыта нужно нагревать очень сильно, чтобы древесина обуглилась полностью. В это время отгоняется, в основном, древесная смола, образующая в приемнике белый дым. Дистиллят расслаивается на коричневатую водную жидкость в смолу. Когда перегонка прекратится, закончим опыт. Перегонный куб откроем только после охлаждения, потому что сильно нагретый древесный уголь при соприкосновении с воздухом легко самовоспламеняется.

Из 100 г древесины получается около 35 г древесного угля и 45 мл дистиллята, а остальная часть древесины превращается в газы.

Разотрем древесный уголь в порошок и насыплем в склянку. Он еще пригодится нам для обесцвечивания растворов. Именно так его используют и в промышленности, прежде всего в производстве сахара.

Из дистиллята выделим древесную смолу (деготь). Для этого после отстаивания осторожно отделим и отфильтруем водный слой. При испытании лакмусовой бумажкой он обнаруживает сильнокислую реакцию. Это объясняется присутствием в нем 10-12 % уксусной кислоты. Именно поэтому полученное вещество называют древесным уксусом. Кроме того, в нем содержатся метанол - от 2 до 4 %, малое количество ацетона (пропанона) и другие вещества. Состав древесной смолы очень сложен. Она находит разнообразное применение, например, ею смолят лодки и пропитывают древесину (железнодорожные шпалы, деревянные бруски для покрытия проезжей части мостов и т. д.) с целью защиты от гниения. Перегонкой можно разделить древесную смолу на жидкое креозотовое масло и древесный пек, которые тоже используются в народном хозяйстве. Например, колбасы при обработке парами креозота "коптятся" и тем самым предохраняются от порчи.

Березовый деготь служит для пропитки натуральной кожи и придает ей своеобразный запах.

Для дальнейшей переработки нальем древесный уксус в колбу и соединим ее с дефлегматором. В верхнее отверстие дефлегматора вставим термометр для измерения температуры паров, а отводную трубку соединим с холодильником, необходимым для конденсации паров. Можно взять холодильник Либиха или снова стеклянную трубку с наружным свинцовым змеевиком. Осторожно нагреем колбу на водяной бане. Приемником вначале может служить маленькая пробирка. При 80-85 °С медленно отгоняется несколько капель прозрачной жидкости. Она состоит преимущественно из ядовитого метанола, который кипит уже при 64,7 °С, малого количества ацетона и других веществ. Плотно закроем пробирку пробкой - полученный "древесный спирт" нам еще понадобится.

Когда при 85 °С ничего уже больше не отгоняется, уберем водяную баню и остаток в колбе на асбестированной сетке нагреем горелкой Бунзена до кипения. Через некоторое время отгоняется вода и уксусная кислота, а растворенные в древесном уксусе составные части смолы (фенолы, креозот) остаются. Когда отгонится приблизительно три четверти жидкости, закончим перегонку. К дистилляту будем понемногу добавлять известь до тех пор, пока он не перестанет окрашивать лакмусовую бумажку в красный цвет. При этом известь реагирует с уксусной кислотой с образованием хорошо растворимого этаната (ацетата) кальция, то есть кальциевой соли уксусной кислоты. Раствор профильтруем и осторожно упарим до получения упомянутой соли в виде серого порошка. Слишком сильно нагревать нельзя, потому что иначе этанат кальция преждевременно разложится. В технике эту соль называют серым древесноуксусным порошком. Сохраним этанат кальция и позднее используем его для получения уксусной кислоты и ацетона. Кто не хочет предварительно перегонять древесный уксус, может сразу нейтрализовать его известью и упарить. В этом случае полученный порошок будет довольно сильно загрязнен фенолами.

В промышленности уксусную кислоту сейчас уже не выделяют обходным путем через ее кальциевую соль, а непосредственно извлекают органическими растворителями, которые не смешиваются с водой. При встряхивании с таким растворителем уксусная кислота из водного раствора переходит в слой добавленного растворителя.


Полукоксование бурого угля

В следующем опыте заполним сосуд для коксования кусочками бурого угля размером в горошину - для этого надо измельчить брикеты. По возможности будем нагревать еще сильнее, чем при сухой перегонке древесины. В остальном же опыт полностью сходен с предыдущим. Вскоре появится характерный запах коксующегося угля. Так же как и в предыдущем опыте, газы можно сначала поджечь, а потом они будут гореть сами. Наряду с метаном, диоксидом углерода и аммиаком (в присутствии аммиака можно убедиться с помощью стеклянной палочки, предварительно погруженной в концентрированную соляную кислоту) они содержат малое количество ядовитого оксида углерода.

В приемнике собирается коричневатая жидкость - подсмольная вода, коричневато-черная смола и сырой парафин. Последний осаждается на стенках приемника желто-коричневатым слоем. Из 250 г бурого угля получается 15-25 г смолы и сырого парафина и около 40 мл подсмольной воды.

Сосуд для коксования мы и на этот раз откроем только когда он совсем остынет, чтобы предотвратить возможное самовоспламенение. В сосуде остается так называемый буроугольный полукокс. Как мы уже знаем, в отличие от каменноугольного кокса и буроугольного высокотемпературного кокса, он хрупок и поэтому не годится для выплавки чугуна. Однако это превосходное топливо, используемое в специальных печах для отопления помещений, а также на электростанциях. Кроме того, в газогенераторах Винклера из него получают газы, применяемые в химическом синтезе и в качестве топлива.

Дистиллят с помощью декантации разделим на подсмольную воду и смесь смолы с парафином, которую можно выскрести ложкой.

В подсмольной воде, которую мы используем для следующих опытов, содержатся, прежде всего, фенолы. Добавив к ней двойной объем этанола (годится и денатурат), можно в значительной мере отделить фенолы, так как они, в отличие от углеводородов, хорошо растворяются в спирте. В оставшейся мягкой массе наряду с небольшим количество спирта содержатся, в основном, жидкие и твердые углеводороды парафинового ряда (алканы). Фракционированной перегонкой из нее можно получить бензин, среднее масло, мягкий и твердый парафин. Можно использовать эту смесь и без предварительного разделения. Позднее мы будем окислять ее с целью получения жирных кислот.

Итак, как мы уже убедились, полукоксование и коксование бурого угля при высокой температуре дают горючие газы, смолу и полукокс или, соответственно, высокотемпературный кокс.

Несмотря на огромные объемы современных коксовых печей, коксовых газов явно не хватает для того, чтобы полностью обеспечить горючим газом промышленность. Поэтому на многих предприятиях, где перерабатывается уголь, из него в результате неполного окисления получают так называемый воздушный, или генераторный газ:

C + 1/2O2 = CO; Q = 122,67 кДж (29,3 ккал)

Этот газ, который, разумеется, содержит и неизмененный азот воздуха, затем сжигают:

CO + 1/2O2 = CO2; Q = 283,45 кДж (67,7 ккал)

Неполное сгорание угля с образованием оксида углерода - "угарного газа", СО - независимо от нашего желания всегда может происходить в любой печи, если она не вовремя закрыта. Угарный газ очень ядовит, отравление им приводит к несчастным случаям.

В промышленности сырой бурый уголь или полукокс газифицируют в крупных газогенераторах. В наши дни для этого применяются аппараты непрерывного действия. В той зоне газогенератора, куда подается воздух, вначале уголь сгорает полностью с образованием диоксида углерода СО2. В расположенном выше слое угля, нагретом сверх 1000 °С, СО2 вследствие недостатка кислорода восстанавливается до СО. Весь процесс в целом происходит самопроизвольно, так как неполное сгорание углерода по приведенному выше уравнению тоже осуществляется с выделением тепла. Этого тепла достаточно для того, чтобы поддерживалась требуемая высокая температура угля. Напротив, образование водяного газа требует дополнительного подвода тепла. Водяной газ образуется при действии водяного пара на раскаленный уголь:

C + H2O = CO + H2; Q=-221,06 кДж (-52,8 ккал)

Водяной газ в настоящее время производится тоже, в основном, на установках непрерывного действия, причем благодаря подаче чистого кислорода часть угля сгорает, так что общий тепловой эффект положителен. Водяной газ - это смесь оксида углерода с водородом, которая может содержать и диоксид углерода. Для обычного отопления водяной газ слишком дорог. Ввиду высокой теплоты сгорания его применяют для получения очень высоких температур (для сварки), а также в качестве ценной добавки к бытовому газу. Водяной газ служит одним из важнейших видов сырья в промышленном органическом синтезе. В качестве так называемого синтез-газа он применяется для получения бензина и метанола. Кроме того, из водяного газа получают водород для синтеза аммиака.
КАРБИД ВСЕ ЕЩЕ НУЖЕН

Все мы знакомы с карбидом кальция. При действии воды он образует горючий газ, используемый для так называемой автогенной сварки. В былые времена газовые лампы, заряженные карбидом, использовались в велосипедных фонарях и даже в мотоциклах и автомобилях. Сейчас такие лампы стали музейными экспонатами.

Формула карбида кальция - СаС2. Он образуется из негашеной извести и кокса при температуре порядка 2000 °С:

CaO + 3C = CaC2 +CO


Получение карбида кальция


В химическом кружке при наличии маленькой электродуговой печи, а также требуемого источника тока можно получить немного карбида кальция. В маленький графитовый тигель или в углубление, выдолбленное в толстом угольном электроде, поместим смесь равных (по массе) количеств оксида кальция (негашеной извести) и кусочков кокса размером с булавочную головку. Избыточный уголь при действии кислорода воздуха сгорит. Схема опыта показана на рисунке.

Верхний электрод приведем в соприкосновение со смесью, создавая электрическую дугу. Смесь проводит ток благодаря кусочкам угля. Пусть дуга горит 20-30 минут при наибольшем возможном токе. Глаза нужно защитить от яркого света очками с очень темными стеклами (очки для сварки).

После остывания смесь превращается в расплав, который, если опыт прошел успешно, содержит маленькие кусочки карбида. Чтобы проверить это, полученную массу поместим в воду и соберем образующиеся пузырьки газа в пробирке, перевернутой вверх дном и заполненной водой.

Если же электродуговой печи в лаборатории нет, то легко можно получить газ из имеющегося в продаже карбида кальция. Заполним газом несколько пробирок - полностью, наполовину, на одну треть и т. д. Заполнять газом более широкие сосуды, например стаканы, нельзя, потому что вода вытечет из них, и в стаканах получатся смеси газа с воздухом. При их воспламенении, как правило, происходит сильный взрыв.

Карбид кальция взаимодействует с водой по уравнению:

CaC2 + 2H2O = Ca(OH)2 +C2H2

Наряду с гидроксидом кальция (гашеной известью) эта реакция приводит к образованию этина - ненасыщенного углеводорода с тройной связью. Благодаря этой связи этин проявляет высокую реакционную способность.
Исследование этина

Докажем присутствие в этине (ацетилене) ненасыщенной связи с помощью реактива Байера или бромной воды. Для этого поместим реактив в пробирку и пропустим через него этин. Его мы получим в другой пробирке из нескольких кусочков карбида кальция. Эту пробирку закроем резиновой пробкой с двумя отверстиями. В одно из них заранее вставим стеклянную трубку с изогнутым концом - он должен быть погружен в пробирку с реактивом. В другое отверстие вставим капельную воронку и кран ее вначале закроем. Можно взять вместо нее и простую стеклянную воронку, заменив кран зажимом, как при получении метана. В воронку нальем воду и, осторожно приоткрывая кран, будем медленно, по каплям, добавлять ее к карбиду. Ввиду взрывоопасности этина проведем опыт вблизи от открытого окна или в вытяжном шкафу. Вокруг ни в коем случае не должно быть открытого пламени или включенных нагревательных приборов.

Этин в чистом состоянии представляет собой газ со слегка одурманивающим запахом. Этин, полученный из технического карбида, всегда загрязнен неприятно пахнущими ядовитыми примесями фосфористого водорода (фосфина) и мышьяковистого водорода (арсина). Смеси этина с воздухом, содержащие от 3 до 70 % этина, взрывоопасны. Этин очень легко растворяется в ацетоне. В виде такого раствора его можно хранить и перевозить в стальных баллонах (Чистый этин почти не обладает запахом. Смеси его с воздухом взрываются от искры в более широком интервале концентраций этина – от 2,3 до 80,7 %. – Прим. перев.).

Этин можно превратить в очень многие соединения, которые, в частности, приобрели большое значение для производства пластмасс, синтетического каучука, лекарств и растворителей. Например, при присоединении к этину хлористого водорода образуется винилхлорид (хлористый винил) - исходное вещество для получения поливинилхлорида (ПВХ) и пластмасс на его основе. Из этина же получают этаналь, с которым мы еще познакомимся, а из него - многие другие продукты.


В ГДР самым крупным производителем и одновременно потребителем этина является комбинат синтетического бутадиенового каучука в Шкопау. Почта 90 % из 400 продуктов этого гигантского предприятия получается полностью или частично из этина. Кроме того, большие количества карбида кальция выпускают азотный завод в Пистерице и электрохимический завод в Гиршфельде. В 1936 г. на территории, где ныне находится ГДР, производилось 206000 т карбида. В 1946 г. производство снизилось до 30000 т, но уже в 1951 г. повысилось до 678 000 т, а в 1955 г. превысило 800 000 т. С 1972 г. только упомянутый комбинат синтетического каучука получает ежегодно более 1 млн. т. карбида.

Эти цифры свидетельствуют об огромном значении карбида кальция и связанных с ним процессов.


В будущем технология, основанная на применении карбида, станет все больше вытесняться более выгодным нефтехимическим производством, созданным в ГДР в Шведте и Лёйне-2. Главным недосгатком карбидного метода получения этина является исключительно большой расход электроэнергии. В самом деле, на комбинате в Щкопау только одна современная карбидная печь «съедает» от 35 до 50 мегаватт. А ведь там работают целые батареи таких печей! На производство карбида кальция в ГДР тратится более 10% всей добываемой электроэнергии.
НЕКОТОРЫЕ ИЗ 800000 СОЕДИНЕНИИ

Молодой немецкий химик, профессор Фридрих Вёлер в 1828 г. впервые получил органическое соединение – мочевину - путем синтеза из неорганических исходных веществ. В середине прошлого века шведский химик Якоб Берцелиус синтезировал уже более 100 различных органических соединений. (Нельзя не упомянуть здесь и других основоположников органического синтеза. В 1842 г. русский химик Н. Н. Зинин впервые синтезировал анилин, который раньше получали только из растительного сырья. В 1845 г. немецкий химик Кольбе синтезировал уксусную кислоту, в 1854 г. француз Бертло— жиры, в 1861 г. А. М. Бутлеров — сахаристое вещество. Интересные сведения о жизни и деятельности этих ученых содержатся, в частности, в книге К. Манолова «Великие химики». Т. 1 и 2. Пер. с болг. (М., Изд. «Мир», 1976), — Прим. перев.)

С тех пор тысячи химиков во всех странах в результате настойчивого и тяжелого труда создали или выделили из природных источников множество новых органических веществ. Они исследовали их свойства и опубликовали результаты своих работ в научных журналах.

К началу XX в. было исследовано уже около 50 000 различных органических соединений, большей частью полученных путем синтеза. К 1930 г. число их выросло до 300000, а в настоящее время число полученных в чистом виде и не следованных органических соединений, по-видимому, намного превышает 800 000. Тем не менее возможности еще далеко не исчерпаны. Каждый день во всем мире находят и исследуют все новые и новые вещества.

Большинство органических соединений не нашло практического применения. Многие из них знакомы по личному опыту лишь очень узкому кругу химиков. Несмотря на это, затраченный труд был отнюдь не напрасным, так как некоторые вещества оказались ценными красителями, лекарствами или материалами нового типа. Нередко бывает, что вещество, которое известно уже несколько десятков лет и давно описано в научной литературе, неожиданно приобретает большое практическое значение. Например, недавно открыта активность некоторых сложных соединений по отношению к насекомым-вредителям. Вполне вероятно, что и другие соединения, которые до сих пор упоминаются только в старых, покрытых пылью научных журналах, в ближайшее же время найдут применение как красители, лекарственные средства или в какой-либо другой области. Не исключено даже, что они приобретут исключительное значение в народном хозяйстве.

Теперь самостоятельно получим и исследуем несколько веществ, особенно важных в промышленности.



ВИННЫЙ СПИРТ И ЕГО РОДСТВЕННИКИ

Система прежде всего! Вступая в мир органической химии, можно сразу же заблудиться, если предварительно не ознакомиться с классами органических соединений и основами языка органической химии. В самом деле, ведь большинство органических веществ можно разделить на группы со сходным строением и подобными свойствами. Химики, используя латинские и греческие корни, и, кроме того, в значительной мере выдуманную ими абракадабру, создали такую хорошо продуманную систему названий, которая сразу же подсказывает специалисту, к какому классу следует отнести те или иные вещества. Одна беда: наряду с названиями по единым правилам международной номенклатуры для многих соединений до сих пор употребляются их собственные названия, связанные с происхождением этих соединений, их наиболее примечательными свойствами или другими факторами. Поэтому для многих соединений в этой книге придется приводить несколько названий.

Мы уже знакомы с насыщенными и ненасыщенными углеводородами Насыщенные углеводороды называются алканами, ненасыщенные с двойной связью — алкенами, а с тройной — алкинами. Нам известно, что эти углеводороды, если расположить их в порядке увеличения числа атомов углерода, образуют гомологические ряды.

Наряду с углеводородами большое значение имеют такие органические соединения, которые содержат еще кислород. Рассмотрим сначала три ряда кислородсодержащих органических соединений:



алканолы (спирты)

алканали (альдегиды)

алканоеые кислоты (прежнее назвение — карбоновые кислоты)

Производными метана являются следующие соединения:

СН3—ОН Н—СНО Н—СООН

метанол метаналь метановая кислота

(метиловый спирт) (формальдегид, (муравьиная кислота)

муравьиный альдегид)

Производными этана являются следующие представители этих трех классов соединений:

СН3—СН2—ОН СН3— СНО СН3— СООН

этанол этаналь этановая кислота

(этиловый спирт) (ацетальдегид, (уксусная кислота)

уксусный альдегид)

Точно так же для всех последующих углеводородов известны родственные или кислородсодержащие соединения. В общем виде производным любых углеводородов соответствуют формулы:

R—OH R—СНО R—СООН

алканол алканаль алкановая кислота

(спирт) (альдегид) (карбоновая кислота)

Число возможных соединений этих трех классов резко увеличится, если мы учтем, что у высших углеводородов каждый изомер образует различные кислородные соединения Так, бутану и изобутану соответствуют разные спирты — бутиловый и изобутиловый:

СН3—СН2—СН2—СН3 СН3—СН2—СН2—ОН

бутан бутанол-1

(бутиловый спирт)

СН3—СН(СН3)—СН3 СН3—СН(СН3)—СН2—ОН

2-метилпропан 2-метилпропанол-1

(изобутан) (изобутиловый спирт)

Кроме того, появляются еще дополнительные изомеры, вследствие того, что характерные кислородсодержащие группы, например, спиртовая группа ОН могут быть связаны либо с крайними цепи, либо с одним из промежуточных атомов углерода. Примерами могут служить пропиловый и изопропиловый спирты:

СН3—СН2—СН3 СН3—СН2—СН2—ОН СН3—СН(ОН)—СН3,

пропан пропанол-1 пропанол-2

(пропиловый спирт) (изопропиловый спирт)

Группы, характерные для классов соединений, называются функциональными группами. К числу таких групп относится, например, гидроксильная группа ОН алканолов и карбоксильная группа СООН карбоновых кислот. Позднее мы познакомимся с некоторыми примерами функциональных групп, содержащих не кислород, а другие элементы. Изменение функциональных групп и введение их в молекулы органических веществ, как правило, является главной задачей органического синтеза.

Разумеется, в одной молекуле и одновременно может быть несколько одинаковых или разных групп. Мы узнаем о нескольких представителях и этого ряда веществ — соединений с несколькими функциями.

Однако, довольно теории! Приступим, наконец, к опытам — получим указанные выше кислородсодержащие производные метана и этана, осуществим их превращения и исследуем их свойства. Эти соединения, названия которых нам давно известны, имеют очень большое значение для химической технологии. Пусть же они помогут нам познакомиться с основами промышленного органического синтеза, хотя мы и не сможем непосредственно воспроизвести промышленный способ их производства. Кроме того, они дадут нам представление о важнейших свойствах классов соединений.
Исследование метанола

При сухой перегонке древесины мы уже получили несколько капель неочищенного метанола (метилового спирта). В настоящее время подавляющая часть метанола получается путем синтеза из водяного газа:

CO + 2H2 = CH3OH

Составные части водяного газа соединяются с образованием метанола. Кроме того, в незначительном количестве образуются и высшие спирты. Этот процесс требует температуры 400 °С, давления 200 ат и ускоряется в присутствии оксидных катализаторов.

Метанол служит растворителем и промежуточным продуктом в производстве красителей. Но главным потребителем его является производство пластмасс, для которого нужны большие количества метаналя (формальдегида). Метаналь же получается при окислении метанола кислородом воздуха. В промышленности смесь паров метанола и воздуха при 400 °С пропускают над медным или серебряным катализатором.

Чтобы смоделировать этот процесс, согнем в спираль кусочек медной проволоки диаметром 0,5-1 мм и щипцами внесем его в несветящуюся зону пламени горелки Бунзена. Проволока раскаляется и покрывается слоем оксида меди (II). Поместим полученный нами раньше метанол (10 капель) в достаточно широкую пробирку и опустим в него раскаленную медную спираль. Вследствие нагревания метанол испаряется и под влиянием катализатора - меди - соединяется с кислородом с образованием метаналя (мы узнаем его по характерному резкому запаху). При этом поверхность медной проволоки восстанавливается. Реакция происходит с выделением тепла. При больших количествах паров метанола и воздуха медь остается разогретой до тех пор, пока реакция не завершится. Отметим, что метанол очень ядовит! Поэтому не будем проводить опыт с большими количествами.

Даже маленький глоток метанола может вызвать полную потерю зрения, а иногда и смерть. Поэтому метанол всегда нужно хранить так, чтобы ни в коем случае никто не мог по ошибке выпить его. Впрочем, метанол наряду с другими соединениями специально добавляют в малом количестве к спирту, который используется для горения, с целью его денатурации. Поэтому денатурированный спирт тоже ядовит!
Опыты с метаналем

Следующие опыты проведем с продажным формалином. Формалин-это 35-40 %-ный раствор метаналя (формальдегида) в воде. Обычно он содержит еще малое количество непрореагировавшего ядовитого метанола. Сам метаналь вызывает свертывание белков и, следовательно, тоже является ядом.

Проведем ряд простых опытов. В пробирке или маленькой колбочке упарим несколько миллилитров формалина. Получится белая труднорастворимая масса, пробу которой мы затем нагреем в другой пробирке. При этом она улетучится, и по запаху чувствуется, что опять образовался метаналь. В чистом состоянии метаналь представляет собой газ, который при обычном давлении и –19 °С превращается в жидкость. Уже на холоду и в еще большей степени при легком нагревании или в присутствии кислот метаналь начинает полимеризоваться. При этом множество его молекул соединяется друг с другом и образует длинные цепи параформа:

...CH2-O-CH2-O-CH2-O-CH2-O...

Сильное нагревание приводит к обратному превращению параформа в метаналь.

Полимеризация характерна для многих алканалей и свидетельствует о присутствии в них ненасыщенной связи. Реакции полимеризации лежат в основе получения многих пластмасс. Метаналь постепенно полимеризуется и в растворе с образованием все более длинных цепных молекул. Такой полимеризованный формалин можно регенерировать путем нагревания параформа и поглощения выделяющихся при этом паров метаналя водой.

Метаналь и другие алканали (альдегиды) дают с так называемым реактивом Шиффа характерную цветную реакцию, которая может служить для их распознавания. Приготовим реагент, взяв на кончике скальпеля немного красителя фуксина и растворив его в нескольких миллилитрах теплой дистиллированной воды. К этому раствору порциями, до обесцвечивания, будем добавлять водный раствор сернистой кислоты. Нальем в пробирку несколько миллилитров полученного таким образом реактива, добавим несколько капель раствора метаналя и перемешаем. Вскоре появится фиолетовое окрашивание. Проведя ряд опытов с все более разбавленным раствором метаналя, мы можем убедиться в чувствительности этой качественной реакции.

Нальём в пробирку несколько миллилитров реактива Фелинга, который можно приготовить, смешав равные количества следующих исходных растворов:

Исходный раствор Фелинга № 1: 7 г сульфата меди (II) в 100 мл дистиллированной воды

Исходный раствор Фелинга № 2: 37 г сегнетовой соли и 10 г едкого натра в 100 мл дистиллированной воды

Сам реактив Фелинга очень неустойчив, а исходные растворы можно хранить. В готовом виде эти растворы иногда можно приобрести в аптеках.

Теперь к готовому реактиву Фелинга добавим около 1 мл раствора метаналя и нагреем до кипения. При этом выделяется элементарная медь, которая образует на стенках пробирки красивый зеркальный налет (медное зеркало). Надо только предварительно обезжирить пробирку хромовой смесью. Другие алканали образуют кирпично-красный осадок оксида меди (I).

Вместо реактива Фелинга можно использовать и аммиачный раствор соли серебра. К разбавленному (приблизительно 2 %-ному) раствору нитрата серебра будем постепенно приливать разбавленный водный раствор аммиака - точно до того момента, пока выпавший вначале осадок не растворится снова. В пробирку, тщательно вымытую хромовой смесью и ополоснутую несколько раз дистиллированной водой, нальем 2 мл приготовленного раствора соли серебра и 5-8 мл раствора метаналя и осторожно нагреем эту смесь, лучше всего на водяной бане. На стенках пробирки образуется отчетливое зеркало, а раствор благодаря выпавшим мельчайшим частицам серебра приобретает интенсивную черную окраску.

Алканали (альдегиды) очень легко окисляются, в результате чего образуются, как правило, алкановые (карбоновые) кислоты. Таким образом, по отношению к окислителям они ведут себя как восстановители. Например, алканали восстанавливают соль двухвалентной меди до оксида меди (I) или даже до элементарной меди. Аммиачный раствор соли серебра они восстанавливают с выделением металлического серебра. Эти реакции являются общими для алканалей и других восстановителей, например для виноградного сахара, о котором мы поговорим позднее.

При действии других окислителей алканали тоже окисляются с образованием алкановых кислот, а иногда даже до диоксида углерода и воды. В пробирке к нескольким миллилитрам раствора метаналя осторожно добавим 10 %-ный раствор пероксида (перекиси) водорода. Затем нагреем смесь и подержим в парах над пробиркой увлажненную синюю лакмусовую бумажку. Ее покраснение говорит о том, что в пробирке образовалась метановая (муравьиная) кислота.


Исследуем метановую кислоту

Метановая (муравьиная) кислота - простейшая органическая кислота. В технике ее получают присоединением оксида углерода к гидроксиду натрия под давлением. По уравнению

NaOH + CO = HCOONa

при этом образуется натриевая соль муравьиной кислоты - метанат натрия, или формиат натрия. Она служит промежуточным продуктом при получении других соединений и находит применение в текстильном и кожевенном производстве. Метановая кислота обладает сильным дезинфицирующим и консервирующим действием, поэтому ее используют для предохранения от порчи пищевых продуктов и силоса. Некоторые применяемые при силосовании препараты представляют собой, в основном, раствор метановой кислоты.

С метановой кислотой, приобретенной в магазине, проведем следующие опыты. (Осторожно! Концентрированная метановая кислота ядовита и разъедает кожу!)

В пробирку нальем 5 мл разбавленной серной кислоты и добавим раствор перманганата калия - столько, чтобы жидкость была сильно окрашена. После этого добавим еще 5 мл приблизительно 80 % метановой кислоты. При нагревании смесь обесцвечивается вследствие восстановления перманганата до сульфата марганца (II). При этом метановая кислота окисляется до диоксида углерода и воды.

В последующих пробирочных опытах проверим, растворяются ли в 60 % метановой кислоте магний, цинк, железо и никель. Активные металлы реагируют с метановой и другими органическими кислотами с образованием солей и выделением водорода. Таким образом, органические кислоты ведут себя совершенно аналогично неорганическим, но, как правило, они слабее.

Концентрированная серная кислота и некоторые катализаторы разлагают метановую кислоту на оксид углерода СО и воду. Нагреем 1 мл безводной метановой кислоты с избытком концентрированной серной кислоты в пробирке, закрытой резиновой пробкой, в которую вставлена стеклянная трубка. Из этой трубки улетучивается газ, который при поджигании горит бледно-голубым пламенем. Это ядовитый оксид углерода (угарный газ), с которым мы уже знакомы. Из-за связанной с этим опасности опыт нужно проводить в вытяжном шкафу или на открытом воздухе.

В заключение надо еще отметить, что метановая кислота и ее соли часто встречаются в природе. Как видно уже по ее второму названию (муравьиная), эта кислота входит в состав ядовитых выделений муравьев. Кроме того, она обнаружена в выделениях пчел, в крапиве и т. д.
Опыты с этанолом

Итак, мы познакомились с метанолом, метаналем и метановой кислотой. Подобные им соединения, содержащие два атома углерода, имеют наибольшее значение в технике.

Этанол (этиловый спирт), который обычно называют просто спиртом, образуется при так называемом спиртовом брожении. Многие виды сахаров, а также продукт осахаривания крахмала в присутствии солода расщепляются под действием микроскопически маленьких дрожжевых грибков в образованием спирта и углекислого газа. Каждый, кто хоть раз видел, как бродит фруктовый сок, наблюдал интенсивное выделение углекислого газа из отводной трубки. А то, что в полученном вине действительно содержится спирт, легко заметить по поведению человека, который это вино выпьет.

Поскольку спиртовое брожение может происходить самопроизвольно, разбавленный спирт известен людям с древнейшего времени как возбуждающий напиток. О губительных же последствиях пьянства едва ли нужно говорить. В особенности молодежи следует полностью отказаться от употребления спиртных напитков.

Содержание спирта при брожении растворов сахара и фруктовых соков колеблется в широких пределах. Однако, поскольку при высокой концентрации спирта дрожжевые грибки не могут существовать, путем брожения можно получить не более чем 15 %-ный спирт. Водку и более концентрированный спирт получают из разбавленных растворов путем перегонки. Проведение такой перегонки по закону разрешается только на государственных ликерно-водочных заводах. Получение же хотя бы самого малого количества спирта частными лицами, пусть даже для химических опытов, строго запрещено законом.

Пищевой спирт и спирт для косметических целей вырабатывается только из зерна (Для этой цели используется также картофельный крахмал. – Прим. перев.). Крахмал сначала превращают в сахар, который затем сбраживают в спирт. Технический спирт получается в больших количествах в результате брожения сульфитного щелока, то есть из отходов целлюлозно-бумажного производства. Все большая часть технического спирта - незаменимого растворителя и исходного вещества в органическом синтезе - в настоящее время производится синтетическим путем из карбида кальция через этин и этаналь (Наиболее совершенным способом получения этанола является его синтез из этена (этилена) путем присоединения к нему воды в присутствии катализатора. Прим. перев.).

Чистый спирт поступает в продажу под названием спирт-ректификат. Он содержит 4-6 % воды. Так как ректификат дорого стоит, мы используем его лишь в немногих опытах. В тех случаях, когда это не будет оговорено, удовольствуемся намного более дешевым денатуратом, который, как нам хорошо известно, применяется в качестве горючего. Это тоже 95 %-ный спирт, но, чтобы он не был пригоден для питья, к нему добавлены ядовитые и имеющие неприятный вкус или запах вещества (метанол, пиридин, эфир фталевой кислоты).

Поскольку впереди нас еще ждут самые разнообразные опыты со спиртом, пока ограничимся только двумя. Во-первых, мы можем легко доказать присутствие воды в ректификате. Нагреем в тигле несколько кристалликов сульфата меди до образования бесцветной безводной соли. Затем щепотку полученной соли добавим к пробе спирта и встряхнем. Наличие воды обнаруживается по голубому окрашиванию раствора. Безводный спирт, называемый также абсолютным спиртом, можно получить только при обработке специальными осушителями.

Денатурат служит хорошим горючим для спиртовок и туристских примусов. В последнее время он применяется даже в качестве ракетного топлива. Правда, в кемпингах его постепенно вытесняет пропан, который доставляют в маленьких стальных баллонах.

Предпринимается также немало попыток изготовить так называемый "сухой спирт". Различные его сорта, как правило, совсем не содержат спирта. Мы тоже можем перевести спирт в полутвердое состояние, растворив при перемешивании в 20 мл денатурата около 5 г мыльной стружки. Получается студенистая масса, которую можно разрезать на куски. Как и жидкий спирт, она горит бледно-голубым пламенем.



Получение этаналя

При окислении этанола образуется этаналь (уксусный альдегид) и далее этановая кислота (уксусная кислота). Сильные окислители сразу превращают этаналь в уксусную кислоту. К тому же результату приводит и окисление кислородом воздуха под влиянием бактерий. Мы легко сможем убедиться в этом, если немного разбавим спирт и оставим его на некоторое время в открытой чашке, а затем проверим реакцию на лакмус. Для получения столового уксуса до сих пор используют, в основном, уксуснокислое брожение спирта или низкосортных вин (винный уксус). Для этого спиртовый раствор при интенсивной подаче воздуха медленно пропускают через опилки из буковой древесины. В продажу поступает 5 % или 10 %-ный столовый уксус или так называемая уксусная эссенция, содержащая 40 % уксусной кислоты (В СССР концентрация пищевой уксусной эссенции, поставляемой в торговую сеть, составляет 80 %, а концентрация столового уксуса — 9 %.— Прим. перев). Для большинства опытов она нам подойдет. Лишь в некоторых случаях понадобится безводная (ледяная) уксусная кислота, которая относится к числу ядов. Ее можно купить в аптеке или магазине химических реактивов. Она уже при 16,6 °С затвердевает в кристаллическую массу, похожую на лед. Синтетическим путем уксусную кислоту получают из этина через этаналь.

Неоднократно упоминавшийся этаналь, или уксусный альдегид, — важнейший промежуточный продукт в химической технологии, основанной на использовании карбида кальция. Его можно превратить в уксусную кислоту, спирт или же в бутадиен — исходное вещество для получения синтетического каучука. Сам этаналь производится в промышленности путем присоединения воды к этину. В ГДР на комбинате синтетического бутадиенового каучука в Шкопау этот процесс осуществляется в мощных реакторах непрерывного действия. Сущность процесса заключается в том, что этин вводится в нагретую разбавленную серную кислоту, в которой растворены катализаторы — соли ртути и другие вещества (Эта реакция открыта русским ученым М. Г. Кучеровым в 1881 г. - Прим. перев). Поскольку соли ртути очень ядовиты, мы не будем сами синтезировать этаналь из этина. Выберем более простой способ — осторожное окисление этанола.

Нальем в пробирку 2 мл спирта (денатурата) и добавим 5 мл 20%-ной серной кислоты и 3 г тонкоизмельченного бихромата калия. Затем быстро закроем пробирку резиновой пробкой, в которую вставлена изогнутая стеклянная трубка. Смесь нагреем малым пламенем до кипения и выделяющиеся при этом пары пропустим через ледяную воду. Образующийся этаналь растворяется в воде, и его можно обнаружить с помощью описанных выше реакций для определения алканалей. Кроме того, раствор проявляет кислую реакцию, потому что окисление легко идет дальше с образованием уксусной кислоты.

Чтобы получить этаналь в больших количествах и более чистым, соберем, руководствуясь рисунком, более сложную установку. Однако этот опыт можно выполнять только в кружке или при наличии у читателя большого опыта. Этаналь ядовит и очень летуч!

Левая часть установки предназначена для пропускания тока диоксида углерода (углекислого газа). Последний необходим для удаления выделяющегося этаналя из сферы реакции, прежде чем он окислится дальше до уксусной кислоты. Поместим в колбу кусочки мрамора и будем добавлять к ним малыми порциями разбавленную соляную кислоту. Для этого нужна капельная воронка с длинной отводной трубкой (не менее 25 см). Можно плотно присоединить такую трубку и к обычной капельной воронке с помощью резинового шланга. Эта трубка должна быть все время заполнена кислотой, чтобы Углекислый газ мог преодолеть избыточное сопротивление последующей части установки и не выходил в обратном направлении (Можно использовать и капельную воронку без длинной отводной трубки. В этом случае в пробку, закрывающую колбу с мрамором, нужно вставить еще одну короткую стеклянную трубку. Такую же трубку вставим в пробку, закрывающую капельную воронку, и соединим обе трубки резиновым шлангом. Еще удобнее пользоваться аппаратом Киппа. — Прим. перев.).

Как обеспечить выравнивание давления в приборе для выделения газа, показано на рисунке на стр. 45.

В другой сосуд, который служит реактором, — круглодонную колбу на 250 мл — нальем сначала 20 мл денатурата. Затем растворим 40 г тонкоизмельченного бихромата калия или натрия (Яд!) в 100 мл разбавленной серной кислоты (Добавим 20 мл концентрированной серной кислоты к 80 мл воды.) Ввиду большей плотности серной кислоты обязательно нужно приливать ее к воде, а не наоборот. Серную кислоту всегда добавляют постепенно и только в защитных очках. Ни в коем случае нельзя лить воду в серную кислоту!

Одну треть приготовленного раствора сразу поместим в реактор, а остальную часть — в соединенную с реактором капельную воронку. Вставим в реактор отвод трубки, соединяющей его с устройством для выделения углекислого газа. Эта трубка должна быть погружена в жидкость.

Наконец, особого внимания заслуживает система охлаждения. В трубке, которая под углом отходит вверх от реактора, должны конденсироваться пары спирта и уксусной кислоты. Лучше всего охлаждать эту трубку с помощью наружного свинцового змеевика, пропуская через него проточную воду. В крайнем случае, можно обойтись без охлаждения, но тогда мы получим более грязный продукт. Для конденсации этаналя, который кипит уже при 20,2 °С, используем прямой холодильник. Желательно, конечно, взять эффективный холодильник — змеевиковый, шариковый или с внутренним охлаждением. В крайнем случае подойдет и не слишком короткий холодильник Либиха. В любом случае охлаждающая вода должна быть очень холодной. Водопроводная вода годится для этого только зимой. В другое же время года можно пропускать ледяную воду из большого бака, установленного на достаточной высоте. Приемники — две соединенные друг с другом пробирки — охладим, погрузив их в охлаждающую смесь из равных (по массе) количеств измельченного льда или снега и поваренной соли. Несмотря на все эти меры предосторожности, пары этаналя все же частично улетучиваются. Так как этаналь имеет неприятный резкий запах и ядовит, опыт нужно проводить в вытяжном шкафу или на открытом воздухе.

Только теперь, когда установка заряжена и собрана, начнем опыт. Вначале проверим работу прибора для выделения газа, приливая к мрамору малое количество соляной кислоты. При этом установка сразу же заполняется углекислым газом. Если он наверняка проходит через реактор и никаких неплотностей не обнаруживается, приступим собственно к получению этаналя, Приостановим выделение газа, включим всю систему охлаждения и нагреем содержимое реактора до кипения. Поскольку теперь при окислении спирта выделяется тепло, горелку можно убрать. После этого снова будем постепенно добавлять соляную кислоту, чтобы через реакционную смесь все время проходил умеренный ток углекислого газа. Одновременно оставшийся раствор бихромата должен медленно поступать из капельной воронки в реактор.

По окончании реакции в каждом из двух приемников содержится по несколько миллилитров почти чистого этаналя. Заткнем пробирки ватой и сохраним для следующих опытов на холоду. Длительное хранение этаналя нецелесообразно и опасно, так как он слишком легко испаряется и, находясь в склянке с притертой пробкой, может с силой выбивать пробку. В продажу этаналь поступает только в запаянных толстостенных стеклянных ампулах.



Опыты с этаналем

Помимо описанных выше качественных реакций, мы можем провести с малыми количествами этаналя ряд других опытов,

В пробирке к 1-2 мл этаналя осторожно добавим (в защитных очках и на расстоянии от себя) с помощью стеклянной палочки 1 каплю концентрированной серной кислоты. Начинается бурная реакция. Как только она затихнет, разбавим реакционную смесь водой и встряхнем пробирку. Выделяется жидкость, которая в отличие от этаналя не смешивается с водой и кипит только при 124 °С. Она получается в результате соединения трех молекул этаналя с образованием кольца:

Этот полимер этаналя называется паральдегидом. При перегонке с разбавленными кислотами он превращается снова в этаналь. Паральдегид применяется в медицине в качестве снотворного средства.

В следующем опыте осторожно нагреем малое количество этаналя с концентрированным раствором едкого натра. Выделяется желтая "альдегидная смола". Она тоже возникает вследствие присоединения друг к другу молекул этаналя. Однако в отличие от паральдегида молекулы этой смолы построены из большого числа молекул этаналя.

Другой твердый продукт полимеризации - метальдегид - образуется при обработке этаналя на холоду газообразным хлористым водородом. Раньше он находил некоторое применение в качестве твердого горючего ("сухого спирта").

Приблизительно 0,5 мл этаналя разбавим 2 мл воды. Добавим 1 мл разбавленного раствора едкого натра или соды и будем нагревать в течение нескольких минут. Мы почувствуем исключительно резкий запах кротонового альдегида. (Проводить опыт в вытяжном шкафу или на открытом воздухе!).

Из этаналя в результате присоединения друг к другу двух его молекул образуется вначале альдол, который также является промежуточным продуктом при получении бутадиена. Он содержит одновременно функциональные группы и алканаля, и алканола.

Отщепляя воду, альдол превращается в кротоновый альдегид:



РАСТВОРИТЕЛИ В БЫТУ И ТЕХНИКЕ

В наши дни органические растворители можно найти в любом доме. Кому не приходилось пятновыводителем удалять пятна жира или смолы с одежды? Все лаки, многие клеи, например резиновый, также содержат различные органические растворители. При наличии некоторого опыта можно уже по запаху сказать, какое именно вещество служит в этих смесях растворителем.

Органические растворители требуются почти на любом производстве. Жиры и масла извлекают из растений растворителями. Производство пластмасс, текстильная и лакокрасочная промышленность потребляют растворители в огромных количествах. Так же обстоит дело в производстве лекарственных препаратов и косметики, во многих других отраслях хозяйства.

С некоторыми главными растворителями, например бензином и спиртом, многим наверняка приходилось встречаться. При оценке растворителя играют роль многие факторы. Прежде всего, конечно, важно, какие вещества в нем хорошо растворяются. Так, в спирте прекрасно растворяются многие смолы, лекарственные и косметические средства, тогда как жиры и парафин растворяются в нем очень плохо. Кроме того, при сопоставлении растворителей существенную роль играют их горючесть, температура кипения, токсичность и, не в последнюю очередь, стоимость.

Следующие опыты проведем с несколькими соединениями, которые особенно часто применяются в качестве растворителей.
Тетрахлорметан - негорючий растворитель

Если в метане все четыре атома водорода заместить хлором, то получится тетрахлорметан (четыреххлористый углерод). Тетрахлорметан представляет собой жидкость, которая кипит при 76 °С и имеет плотность 1,593 г/см3. Таким образом, он намного тяжелее воды и почти не смешивается с ней. Тетрахлорметан превосходно растворяет смолы, жиры и т. д. и имеет перед другими растворителями большое преимущество: он не горит. Напротив! Его тяжелые пары подавляют пламя, благодаря этому его используют в огнетушителях.

Нальем в чашку немного бензина, спирта или ацетона и на открытом воздухе осторожно подожжем эту горючую жидкость. Если мы добавим теперь несколько миллилитров тетрахлорметана, то огонь погаснет. Следует учесть, что при гашении техрахлорметаном может образоваться очень ядовитый газ фосген СОСl2. Поэтому в закрытых помещениях это средство для тушения огня можно применять только с соответствующими предосторожностями. В последнее время заряженные тетрахлорметаном огнетушители выходят из употребления. Вместо него в огнетушителях теперь применяются смешанные бром-хлор- или фтор-хлорпроизводные углеводородов.

В следующем опыте смешаем 2 мл тетрахлорметана с 1,5 г цинковой пыли. Последняя представляет собой очень мелкий порошок, который получается при конденсации паров цинка. К смеси добавим еще столько жженой магнезии или оксида цинка, чтобы получилась паста средней вязкости. Поместим ее на кусок листового железа или в железный тигель и на открытом воздухе нагреем на голом огне до 200 °С. При этом начинается бурная реакция, приводящая к повышению температуры смеси выше 1000 °С. Одновременно выделяется густой дым. Тетрахлорметан и цинк реагируют с образованием хлорида цинка:

2Zn + CCl4 = 2ZnCl2 + C

Хлорид цинка при высокой температуре испаряется и образует туман, притягивая воду из воздуха.

Другие металлы, особенно железо, тоже медленно реагируют с тетрахлорметаном. Поэтому он способствует коррозии и не годится в качестве растворителя лаков для металла и тому подобных целей.

Тетрахлорметан довольно ядовит. Вдыхание его паров в малых дозах оказывает наркотическое действие, а в больших дозах или при так называемом хроническом отравлении приводит к тяжелым поражениям печени. Поэтому при работе с тетрахлорметаном нужна осторожность! Надежная вентиляция исключит накопление паров тетрахлорметана в воздухе.


Пропанон растворяет жир

Следующим важным представителем группы растворителей является пропанон (ацетон).

При сухой перегонке древесины мы получили кальциевую соль уксусной кислоты - "серый древесноуксусный порошок". Тот, кто не проводил этого опыта, легко может приготовить указанную соль путем нейтрализации разбавленного раствора уксусной кислоты (столового уксуса) карбонатом или гидроксидом кальция.

Для получения ацетона поместим несколько граммов древесноуксусного порошка в пробирку из тугоплавкого стекла. Пробирку закроем резиновой пробкой, в отверстие которой вставлена изогнутая стеклянная трубка. Эту трубку охладим с помощью свинцового змеевика. Приемником может служить пробирка, погруженная в ледяную воду. Из-за огнеопасности продукта отводная трубка должна быть не слишком короткой, чтобы расстояние между пламенем и приемником было как можно больше. Кроме того, учтем, что опыт можно проводить только в вытяжном шкафу или на открытом воздухе.

Сильно нагреем пробирку с порошком горелкой Бунзена. Выделяются пары, и в приемнике конденсируется подвижная жидкость, которая в зависимости от степени чистоты исходной соли имеет окраску от желтой до коричневатой. Она состоит, главным образом из ацетона, применяемого в качестве растворителя жиров:

В превосходных свойствах этого растворителя легко убедиться, растворяя небольшие количества жира, воска, лака и других органических веществ. Многие пластмассы тоже растворяются в ацетоне или по крайней мере набухают в нем. Попробуйте обработать им кусочек целлулоида, полистирола или другой пластмассы. Что и говорить - отличный растворитель, к тому же, в отличие от тетрахлорметана, он не вызывает коррозии. Зато очень легко воспламеняется. Чтобы убедиться и в этом, нальем чуть-чуть в чашку и подожжем, осторожно приближая источник огня.

В чистом состоянии ацетон (пропанон) - бесцветная жидкость, кипящая уже при 56,2 °С и имеющая своеобразный, не лишенный приятности запах. Раньше его получали большей частью путем сухой перегонки серого древесноуксусного порошка, а в наши дни производят различными методами, в том числе из уксусной кислоты при пропускании ее паров над катализатором, окислением изопропилового спирта и брожением крахмала под влиянием соответствующих бактерий. В последние годы ацетон получают одновременно с фенолом окольным путем - через стадию образования кумола - из газов нефтехимического производства.

По своему химическому строению ацетон - простейший представитель алканонов (кетонов), родственных алканалям (альдегидам). В то время, как алканали, например метаналь или этаналь, содержат группу С=O на конце молекулы, у алканонов такая группа находится у "внутреннего", т. е. не у крайнего в цепи атома углерода. Алканоны проявляют ненасыщенность в меньшей степени, чем алканали, и поэтому не обнаруживаются с помощью качественных реакций, характерных для алканалей. (Проверить!)


И, наконец, эфир

В заключение рассмотрим эфир, который, помимо его применения в медицине для наркоза, является прекрасным растворителем для жиров и многих других веществ.

Строго говоря, существуют различные простые эфиры, которые так же, как алканали или алканоны, образуют класс соединений со сходными свойствами. Обычный эфир строго должен называться диэтиловым эфиром. Он образуется из двух молекул этанола путем отщепления воды, обычно с помощью концентрированной серной кислоты:

Получим малое количество эфира. Для этого в пробирку нальем около 2 мл денатурата и 1,5 мл концентрированной серной кислоты. Подберем к пробирке пробку с двумя отверстиями. В одно из них вставим маленькую капельную воронку или просто маленькую воронку с удлиненной трубкой, выход из которой вначале закроем с помощью кусочка резинового шланга и зажима. Используя второе отверстие в пробке, присоединим к пробирке устройство для охлаждения паров - такое же, как и при получении этаналя. Приемник надо непременно охлаждать водой со льдом, потому что эфир кипит уже при 34,6 °С! Ввиду его необычайно легкой воспламеняемости, холодильник должен быть как можно длиннее (не меньше 80 см), чтобы между источником огня и приемником было достаточное расстояние. По этой же причине проведем опыт вдали от горючих предметов, на открытом воздухе или в вытяжном шкафу. Нальем в воронку еще около 5 мл денатурата и осторожно нагреем пробирку на асбестированной сетке горелкой Бунзена приблизительно до 140 °С (Температура не должна превышать 145 0С, так как при более высокой (около 170 0С) образуется этен. Даже при работе с малым количеством эфира всегда следует учитывать опасность пожара. Поэтому рекомендуем заменить горелку закрытой электрической плиткой и между источником тепла и приемником установить защитный экран. При использовании капельной воронки надо тщательно смазать и проверить кран. В качестве приемника лучше всего взять плотно присоединенную к холодильнику пробирку с боковым отводом, на который можно надеть резиновый шланг для увеличения расстояния между выходящими парами эфира и источником тепла. Приемник лучше охлаждать смесью льда с солью – Прим. перев). В приемнике конденсируется очень летучий дистиллят, и в случае недостаточного охлаждения мы почувствуем характерный запах эфира. Осторожно приоткрывая зажим, будем постепенно, малыми порциями добавлять спирт. В конце реакции серная кислота все больше разбавляется образующейся водой, в результате чего образование эфира прекращается и перегоняется уже спирт.

При тщательном выполнении опыта мы получим около 4 мл очень подвижной, прозрачной жидкости, которая состоит в основном из эфира. Если несколько капель его нанести на палец, то почувствуешь сильный холод. Дело в том, что эфир быстро испаряется, а теплота испарения отнимается от окружающей его среды.

На химических предприятиях и в больницах при работе с эфиром случались очень сильные взрывы. При длительном соприкосновении с кислородом воздуха и под влиянием солнечного света в эфире образуются легко взрывающиеся перекиси. Поэтому ни в коем случае не будем хранить большее количество эфира. Оно не понадобится нам ни в одном из опытов, рекомендуемых в этой книге. Эфир будет нужен нам только в смеси с двумя частями спирта как растворитель для коллодия. Поэтому остаток эфира сразу разбавим двойным количеством спирта и будем хранить только в виде этой безопасной смеси в надежно закрытой бутылочке из темно-коричневого стекла.

Продолжительное вдыхание паров эфира вызывает потерю сознания, что впервые использовали в 1846 г. Джексон и Мортон для наркоза (Для этой цели эфир во время хирургической операции впервые применил Лонг (США) в 1842 г, но этот эксперимент не был опубликован. – Прим. перев.). Тщательно очищенный эфир и сейчас применяется с этой целью. Однако можно надеяться, что читатели этой книги заслуживают доверия и, конечно, не будут проводить опасных, безответственных и категорически недопустимых собственных опытов, связанных с наркозом.

Завершая этот раздел, посвященный растворителям, следует подчеркнуть, что в следующих частях книги мы еще познакомимся с другими важными растворителями, например, с бензолом и сложными эфирами, прекрасно растворяющими лаки и пластмассы.


ПРОИЗВОДНЫЕ БЕНЗОЛА

Углеродный скелет органических соединений, которые мы рассматривали до сих пор, представлял собой прямые или разветвленные цепи. Немецкий химик Август Кекуле впервые открыл, что молекулы многих других органических соединений построены по типу кольца. Важнейшее кольцо (циклическое соединение углерода) - бензол - содержится в количестве 1-2 % в каменноугольной смоле, из которой его и получают.

Бензол - бесцветная жидкость, которая кипит при 80,2 °С и затвердевает при 5,5 °С. Для того, кто хранит свои реактивы в неотапливаемом помещении, замерзание бензола - признак того, что пора найти место потеплее для склянок с водными растворами, чтобы они не раскололись, когда начнет замерзать вода.

Бензол очень огнеопасен! Поместим несколько капель его на часовое стекло и осторожно поднесем горящую спичку. Бензол воспламенится раньше, чем пламя соприкоснется с жидкостью. Он горит коптящим пламенем, что указывает на высокое содержание углерода. Брутто-формула бензола - С6Н6. Таким образом, соотношение углерода и водорода у него такое же, как у этина. Действительно, бензол образуется из трех молекул этина при пропускании последнего через раскаленную железную или кварцевую трубку. Но мы ни в коем случае не будем проводить эту реакцию самостоятельно из-за опасности взрыва, который произойдет при попадании в трубку воздуха.

Несмотря на сходство в составе бензола и этина, их химические свойства совершенно различны. Применив бромную воду или реактив Байера, мы легко докажем, что бензол не вступает в реакции, типичные для ненасыщенных соединений. Очевидно, это обусловлено его особым строением. Кекуле предложил для бензола формулу, которая содержит три двойных связи в шестичленном кольце. Однако в соответствии с новыми представлениями устойчивое строение бензола лучше объясняется тем, что "избыточные" валентные электроны, как показано в формуле, приведенной посередине, принадлежат всему кольцу, образуя единое "электронное облако":

Производные бензола, которых сейчас уже известно несколько сотен тысяч, образуются при введение в кольцо функциональных групп, а также в результате присоединения к бензольному кольцу дополнительных колец или углеродных боковых цепей. В следующих опытах мы получим и исследуем некоторые из простейших и одновременно важнейших в технике производных бензола.



Нитробензол из бензола

В отличие от углеводородов с открытой цепью, у которых это очень затруднительно, в ароматические углеводороды легко можно ввести нитрогруппу NO2.

Для получения нитробензола нам понадобятся вначале 15 мл бензола, 20 мл концентрированной серной кислоты и 15 мл концентрированной азотной кислоты, а в конце опыта - вода и разбавленный едкий натр. Бензол очень ядовит; ни в коем случае нельзя вдыхать его пары.

Прежде всего, подготовим все необходимое оборудование. Подберем колбу Эрленмейера вместимостью 125 мл с резиновой пробкой, в отверстие которой вставлена не слишком тонкая стеклянная трубка длиной около 50 см. Нам понадобятся также делительная воронка (вместимостью 150 мл), водяная баня и термометр со шкалой до 100 °С. Подготовим еще две кастрюли - одну с ледяной водой, а другую с водой, нагретой до 60 °С.

Ввиду опасности попадания брызг в глаза, этот опыт - как и всегда при работе с концентрированными кислотами - можно проводить только в защитных очках!

В колбу Эрленмейера поместим сначала концентрированную серную кислоту и потом очень осторожно, все время слегка покачивая колбу, малыми порциями добавим азотную кислоту. Разогретую нитрующую смесь охладим, погрузив колбу в холодную воду. Затем вставим в колбу термометр и начнем постепенно добавлять бензол, непрерывно перемешивая жидкость в колбе стеклянной палочкой. Температура при этом не должна превышать 50-60 °С. Если она поднимется выше, то перед добавлением следующей порции бензола необходимо выдержать колбу в ледяной воде. Когда весь бензол будет добавлен, колбу с вертикально вставленной трубкой выдержим еще некоторое время в бане с теплой водой, температуру которой будем поддерживать от 50 до 60 °С, добавляя при необходимости более горячую воду.

После этого перенесем содержимое колбы в делительную воронку. Мы обнаружим два слоя: верхний слой содержит нитробензол, а нижний - избыточную нитрующую смесь. Сольем эту смесь кислот, добавим в делительную воронку около 30 мл воды, сильно встряхнем и отделим нитробензол, который теперь, вследствие своей большой плотности, образует уже нижний слой. Для дальнейшей очистки его надо таким же образом промыть сильно разбавленным раствором едкого натра и в заключение еще раз водой.

Нитробензол - бледно-желтая жидкость с температурой кипения 210 °С и плотностью 1,203 г/см3 при 20 °С. Если во время опыта мы допустим чрезмерное повышение температуры, нитробензол будет окрашен сильнее из-за примеси динитробензола. Нитробензол очень ядовит (При попадании нитробензола на кожу пораженное место нужно обмыть спиртом, а затем теплой водой с мылом. – Прим. перев.). Нужно также остерегаться вдыхания его вредных паров с характерным сильным запахом горького миндаля. Хотя такой аромат нужен в парфюмерии, применять для этого нитробензол категорически запрещено из-за его токсичности. Обычно с той же целью используется безопасный бензальдегид, имеющий такой же запах.


Анилин - родоначальник красителей

Нитробензол для нас - так же, как и для химической промышленности - только промежуточный продукт. Мы тоже двинемся дальше и получим из него путем восстановления анилин - родоначальник синтетических красителей (Эта реакция называется реакцией Зинина. Русский химик Н.Н. Зинин в 1842 г. впервые осуществил восстановление нитробензола в анилин при действии сернистого аммония. – Прим. перев.).

Чтобы получить аминогруппу NН2, мы должны в нитрогруппе заместить кислород водородом. В промышленности нитробензол в настоящее время восстанавливают обычно в газовой фазе, пропуская его пары в смеси с водородом над медным катализатором. Мы, работая с малыми количествами, предпочтем более старый способ, при котором восстановление осуществляется в жидкой фазе водородом в момент выделения - на латыни это in statu nascendi. Для этого получим водород действием соляной кислоты на железные опилки или, лучше, на гранулированный цинк или олово.

Проведем опыт следующим образом. В колбу Эрленмейера - такую же, как при получении нитробензола - поместим 10 г нитробензола и 15 г железных опилок или гранулированного цинка. Вначале добавим 5 мл концентрированной соляной кислоты и тотчас закроем колбу пробкой, в которую вертикально вставлена стеклянная трубка. При осторожном встряхивании начнется бурная реакция. При этом колба разогревается, и ее надо охладить умеренно холодной водой - так, чтобы реакция все же не остановилась совсем. Время от времени будем вынимать пробку с трубкой и добавлять еще 5-8 мл соляной кислоты. Когда мы добавим всего 50 мл соляной кислоты, подождем, пока реакция затихнет, и в вытяжном шкафу или на открытом воздухе будем греть колбу с той же стеклянной трубкой на водяной бане от 30 минут до часа.

В заключение разбавим реакционную смесь водой и для нейтрализации кислоты добавим раствор кальцинированной или питьевой соды (бикарбоната натрия) до щелочной реакции. Для этого смесь из колбы перенесем в химический стакан и прильем сначала воду, а затем - указанный раствор. Выделится коричневая жидкость со своеобразным запахом. Это и есть анилин, который можно отделить осторожной декантацией. Лучше, хотя и хлопотнее, выделить его перегонкой с водяным паром.

Внимание! Анилин - очень сильный яд, который положено хранить только закрытым и с надписью "яд". При работе с анилином нужно остерегаться вдыхания его паров. Лучше всего - так же, как и диэтиловый эфир, - хранить анилин только в виде разбавленного спиртового раствора.

Анилин послужил исходным веществом для производства первых синтетических органических красителей. Очень давно Рунге открыл первый анилиновый краситель, который и сейчас еще используется для обнаружения анилина.

Несколько капель анилина смешаем с 10 мл воды и добавим отфильтрованный водный раствор хлорной извести. Интенсивное фиолетовое окрашивание объясняется образованием красителя, сложное строение которого явилось трудной головоломкой даже для химиков XX века. Сохраним анилин для следующих опытов и заметим в заключение, что большинство красителей в наши дни получают не из анилина, а из других соединений.


Другие представители ароматического ряда

Из других производных бензола упомянем здесь только фенол, толуол и нафталин. Фенол тоже был впервые обнаружен Рунге в каменноугольной смоле. Он представляет собой ароматическое соединение с гидроксильной группой и, следовательно, подобен алканолам. Однако, в отличие от алканолов, фенол имеет слабокислую реакцию и легко взаимодействует со щелочами с образованием фенолятов. Поэтому его можно растворять в щелочах. Мы уже получили родственные ему крезолы при сухой перегонке древесины и полукоксовании бурого угля. Это можно доказать, добавив к вытяжке древесного дегтя или буроугольной смолы и подсмольной воде раствор хлорида железа(III). Фенол и родственные ему вещества дают при этом окраску от синей до сине-фиолетовой. Правда, для вытяжек смолы и дегтя эта окраска может маскироваться их собственной коричневой окраской.

Чистый фенол - твердое вещество, которое плавится при 40,8 °С и кипит при 182,2 °С. При 16 °С он растворяется в 12 частях воды, причем полученный раствор окрашивает лакмусовую бумажку в красный цвет. (Проверить!) В свою очередь, фенол тоже растворяет в себе некоторое количество воды и становится жидким, даже когда в нем растворено только 5 % воды! Если мы добавим к твердому фенолу воду, то получим сначала жидкий раствор воды в феноле, а при дальнейшем добавлении воды - раствор фенола в воде.

В связи с ростом производства пластмасс фенол стал одним из важнейших промежуточных продуктов химической промышленности. Мировое производство его сейчас, по-видимому, достигает почти 200 000 т в год. В ГДР значительное количество фенола получается при полукоксовании бурого угля. Кроме того, все больше фенола производится путем синтеза.

При введении в бензольное кольцо двух или трех групп ОН образуются многоатомные фенолы. Они являются сильными восстановителями и поэтому применяются в качестве проявителей в фотографии, как, например, гидрохинон. Трехатомный фенол – пирогаллол - легко поглощает даже кислород воздуха.

Толуол - производное бензола, в котором один атом водорода замещен метильной группой. Эта жидкость сходна по свойствам с бензолом; она применяется как растворитель, а также для производства взрывчатых веществ. При введении трех нитрогрупп толуол превращается в тринитротолуол - одно из самых мощных взрывчатых веществ. Крезолы, образующиеся в больших количествах при полукоксовании, тоже являются производными толуола, содержащими группу ОН. Они, таким образом, соответствуют фенолу.

Упомянем нафталин - это простейший представитель углеводородов с несколькими кольцами. В нем у обоих бензольных колец имеются два общих атома углерода. Такие вещества называют конденсированными ароматическими соединениями.

В каменноугольной смоле содержится почти 64 % нафталина. Он образует блестящие кристаллические пластинки, которые плавятся при 80°С и кипят при 218°С. Несмотря на это, нафталин быстро испаряется даже при комнатной температуре. Если оставить кристаллики нафталина на несколько дней открытыми, то они заметно уменьшатся и в помещении появится резкий запах нафталина. Нафталин раньше входил в состав большинства средств против моли. Теперь для этой цели его все чаще заменяют другими веществами, имеющими менее навязчивый запах.

В промышленности из нафталина в больших количествах производится фталевая кислота - исходное вещество для получения ценных красителей. Позднее мы получим некоторые красители самостоятельно.

В заключение приведем еще пример гетероциклического соединения. Гетероциклическими называют вещества, содержащие в кольце не только атомы углерода, но и атомы других элементов (один или несколько атомов кислорода, азота или серы). К этому необычайно обширному ряду соединений относятся важные природные вещества, например индиго и морфин, а также фрагменты молекул некоторых аминокислот.

Рассмотрим фурфурол. Мы видим, что его молекула содержит пятичленное кольцо из четырех атомов углерода и одного атома кислорода. Судя по боковой цепи, можно сказать, что фурфурол представляет собой гетероциклический алканаль.
Получим фурфурол из отрубей

50 г отрубей поместим в коническую или круглодонную колбу и смешаем их со 150 мл 10-15 %-ного раствора серной кислоты. Отгоним из колбы около 100 мл жидкости. В ней содержится около 1 г растворенного фурфурола. Извлечем его из дистиллята эфиром или тетрахлорметаном и органический растворитель упарим в вытяжном шкафу. Далее проведем только две простые качественные реакции.

В первом опыте к пробе полученного раствора добавим несколько капель соляной кислоты и немного анилина. Уже на холоду возникает ярко-красная окраска.

В следующем опыте к исследуемому раствору снова добавим соляную кислоту и несколько крупинок флороглюцина (это трехатомный фенол). При кипячении появится вишнево-красная окраска.

При кипячении с разбавленными кислотами определенные типы сахаров - пентозы - образуют фурфурол. Пентозы содержатся в отрубях, соломе и т. д. и могут быть обнаружены приведенными выше методами.
Этими несколькими (из 800000!) примерами пока закончим наше краткое путешествие в мир органических соединений. В следующих главах обратимся к некоторым наиболее важным областям применения органической химии.
5. Материалы на любой вкус

ПЛАСТМАССЫ ВЧЕРА, СЕГОДНЯ И ЗАВТРА

<< предыдущая страница   следующая страница >>