Тексты лекций для студентов специальности 1 31 04 01- 02 «Физика ( научно-производственная деятельность)» Гомель уо «ггу им. Ф. Скор - umotnas.ru o_O
Главная
Поиск по ключевым словам:
Похожие работы
Название работы Кол-во страниц Размер
Николай Васильевич Максименко Доктор физ мат наук Профессор Кафедра... 1 204.84kb.
Учебная программа для специальности 1-31 03 01 Математика 1 52.82kb.
В. П. Пьянков тексты лекций по элементарной математике 6 446.67kb.
Техника вычислений процессов взаимодействия элементарных частиц 1 104.56kb.
Методические указания для проведения практических занятий по курсу... 1 187.38kb.
Учебная программа для студентов 3 курса очного отделения специальности... 1 193.43kb.
Конспект лекций для студентов специальности «Информатика» 9 1614.17kb.
Конспект лекций для студентов специальности асу пермь, 2001г 18 1797.76kb.
Курс лекций Минск 2007 (075. 8) Ббк 65. 01 37 4487.72kb.
Сотрудничество Речицкого районного лицея с ггу им. Ф. Скорины как... 1 66.13kb.
Конспект лекций по курсу «Организация ЭВМ и систем» для студентов... 37 3287.39kb.
Программа по биологии Введение 1 38.7kb.
Викторина для любознательных: «Занимательная биология» 1 9.92kb.

Тексты лекций для студентов специальности 1 31 04 01- 02 «Физика ( научно-производственная - страница №2/6

Изотопный состав воды.

Атомы водорода и кислорода, образующие воду, или окись водорода, могут иметь различные массовые числа и отличаться друг от друга своими физико-химическими свойствами, но при этом они имеют одинаковый электрический заряд атомных ядер и поэтому занимают в периодической системе элементов одно и то же место. Такие разновидности атомов одного и того же химического элемента называются изотопами. Известны пять водородов и пять кислородов. Правда, по два из них (4H, 5H, 14O и 15O) радиоактивны и очень короткоживущие. Например, длительность существования водорода

–4–4·10-11 сек. Наиболее широко известны следующие изотопы водорода: протий 1H (с относительной атомной массой 1), дейтерий 2H, или D (c относительной атомной массой 2) и тритий 3H, или T (c относительной атомной массой 3), наиболее тяжелый, но слаборадиоактивный водород (его период полураспада 12,3 года), и изотопы кислорода: 16O, 17O и 18O. Эти шесть изотопов могут образовывать 18 изотопических разновидностей воды: 1Н216О; 1НD16О; D216О ; 1НT16О; DT16О; T2О16; 1Н217О; 1НD17О; D217О; 1НT17О; DT17О; T217О; 1Н218О; 1НD18О; D218О; 1НT18О; DT18О; T218О.

На Земле на 6800 атомов протия приходится один атом дейтерия, а в межзвездном пространстве один атом дейтерия приходится уже на 200 атомов протия.




Строение молекулы воды.

Молекула воды состоит из двух атомов водорода (Н) и одного атома кислорода (О). Все многообразие свойств воды и необычность их проявления в конечном счете определяются физической природой этих атомов и способом их объединения в молекулу. В отдельной молекуле воды ядра водорода и кислорода расположены так относительно друг друга, что образуют как бы равнобедренный треугольник со сравнительно крупным ядром кислорода на вершине и двумя мелкими ядрами водорода у основания. В молекуле воды имеются четыре полюса зарядов: два отрицательных за счет избытка электронной плотности у кислородных пар электронов и два положительных - вследствие недостатка электронной плотности у ядер водорода - протонов. Такая ассиметричность распределения электрических зарядов воды обладает ярко выраженными полярными свойствами; она является диполем с высоким дипольным моментом -1,87 дебай

Благодаря этому молекулы воды стремятся нейтрализовать электрическое поле. Под воздействием диполей воды на поверхности погруженных в нее веществ межатомные и межмолекулярные силы ослабевают в 80 раз. Столь высокая диэлектическая проницаемость из всех известных веществ присуща только воде. Этим объясняется ее способность быть универсальным растворителем.

Вода химически не изменяется под действиям большинства тех соединений, которые она растворяет, и не изменяет их. Это характеризует ее инертным растворителем, что важно для живых организмов на нашей планете, поскольку необходимые их тканям питательные вещества поступают в водных растворах в сравнительно устойчивом виде. Как растворитель вода многократно используется, неся в своей структуре память о ранее растворенных в ней веществах. Молекулы в объеме воды сближаются противоположными зарядами, возникают межмолекулярные водородные связи между ядрами водорода и неподеленными электронами кислорода, насыщая электронную недостаточность водорода одной молекулы воды и фиксируя его по отношению к кислороду другой молекулы. Тетраэдрическая направленность водородного облака позволяет образовать четыре водородные связи для каждой водной молекулы, которая благодаря этому может ассоциировать с четырьмя соседними. В такой модели углы между каждой парой линий, соединяющих центр (атом О) с вершинами, равны 109,5 С. Водородные связи в несколько раз слабее ковалентных связей, объединяющих атомы кислорода и водорода. Микромолекулярная структура воды с большим количеством полостей позволяет ей, разрывая водородные связи, присоединять молекулы или части молекул других веществ, способствуя их растворению. Сравнивая воду - гидрид кислорода с гидридами элементов, входящих в одну с кислородом подгруппу периодической системы Д.И. Менделеева, следовало бы ожидать, что вода должна кипеть при - 70 оС, а замерзать при - 90 оС. Но в обычных условиях вода замерзает при Такое резкое отклонение от установленной закономерности как раз и объясняется тем, что вода является ассоциированной жидкостью. Ассоциированность ее сказывается и на очень высокой теплоте парообразования. Так, для того чтобы испарить 1 г воды, нагретой до 100 оС, требуется в шестеро больше тепла, чем для нагрева такого же количества воды от 0 до 80 оС. Благодаря этому вода является мощнейшим энергоносителем на нашей планете. По сравнению с другими веществами, она способна воспринимать гораздо больше тепла, существенно не нагреваясь. Вода выступает как бы регулятором температуры, сглаживая благодаря своей большой теплоемкости резкие температурные колебания. В интервале от 0 до 37 оС теплоемкость ее падает и только после 37 оС начинает повышаться. Минимум теплоемкости воды соответствует температуре 36 - 39 оС - нормальной температуре человеческого тела. Благодаря этому возможна жизнь теплокровных животных, в том числе и человека. 0 оС и закипает при 100 оС.


1.3 Физические свойства воды, их аномальность.

Чистая вода представляет собой бесцветную без вкуса запаха прозрачную жидкость. Плотность воды при переходе ее из твердого состояния в жидкое не уменьшается, как почти у всех других веществ, а возрастает.

Как хорошо известно, вода принята за образец меры – эталон для всех других веществ. Казалось бы, за эталон для физических констант следовало бы выбрать такое вещество, которое ведет себя самым нормальным, обычным образом. А получилось как раз наоборот.

И первое, самое поразительное, свойство воды заключается в том, что вода принадлежит к единственному веществу на нашей планете, которое в обычных условиях температуры и давления может находиться в трех фазах, или трех агрегатных состояниях: в твердом (лед), жидком и газообразном (невидимый глазу пар).



Аномалия плотности.


Всем известна аномалия плотности. Она двоякая. Во-первых, после таяния льда плотность увеличивается, проходит через максимум при 4 оС и только затем уменьшается с ростом температуры. В обычных жидкостях плотность всегда уменьшается с температурой. И это понятно. Чем больше температура, тем больше тепловая скорость молекул, тем сильнее они расталкивают друг друга, приводя к большей рыхлости вещества. Разумеется, и в воде повышение температуры увеличивает тепловую скорость молекул, но почему-то это приводит в ней

Переохлажденная вода.


В последнее время много внимания уделяется изучению свойств переохлажденной воды, то есть остающейся в жидком состоянии ниже точки замерзания 0 оС. (Переохладить воду можно либо в тонких капиллярах, либо - еще лучше - в виде эмульсии: маленьких капелек в неполярной среде - "масле"). Что же происходит с аномалией плотности при переохлаждении воды? Она ведет себя странно. С одной стороны, плотность воды сильно уменьшается по мере переохлаждения (то есть первая аномалия усиливается), но, с другой стороны, она приближается к плотности льда при понижении температуры (то есть вторая аномалия ослабевает).

Аномалия сжимаемости.


Вот еще пример аномалии воды: необычное температурное поведение ее сжимаемости, то есть степени уменьшения объема при увеличении давления . Обычно сжимаемость жидкости растет с температурой: при высоких температурах жидкости более рыхлы (имеют меньшую плотность) и их легче сжать. Вода обнаруживает такое нормальное поведение только при высоких температурах. При низких же сжимаемость ведет себя противоположным образом, в результате чего в ее температурном поведении появляется минимум при 45 оС.


Поверхностное натяжение.


Среди необычных свойств воды трудно обойти вниманием еще одно - ее исключительно высокое поверхностное натяжение 0,073 Н/м (при 20o С). Из всех жидкостей более высокое поверхностное натяжение имеет только ртуть. Оно проявляется в том, что вода постоянно стремится стянуть, сократить свою поверхность, хотя она всегда принимает форму емкости, в которой находится в данный момент. Вода лишь кажется бесформенной, растекаясь по любой поверхности. Сила поверхностного натяжения заставляет молекулы ее наружного слоя сцепляться, создавая упругую внешнюю пленку. Свойства пленки также определяются замкнутыми и разомкнутыми водородными связями, ассоциатами различной структуры и разной степени упорядоченности. Благодаря пленке некоторые предметы, будучи тяжелее воды, не погружаются в воду (например, осторожно положенная плашмя стальная иголка). Многие насекомые (водомерки, ногохвостки и др.) не только передвигаются по поверхности воды, но взлетают с нее и садятся, как на твердую опору. Более того, живые существа приспособились использовать даже внутреннюю сторону водной поверхности. Личинки комаров повисают на ней с помощью не смачиваемых щетинок, а маленькие улитки - прудовики и катушки - ползают по ней в поисках добычи.

Лекция 2 Межмолекулярные и внутримолекулярные взаимодействия

1.1 Парные потенциалы взаимодействия между двумя молекулами


1.2 Разделение межмолекулярных взаимодействий по типам





1.1 Парные потенциалы взаимодействия между двумя

молекулами

Межмолекулярные взаимодействия имеют фундаментальное значение для понимания того, как атомы и молекулы организованы в жидкостях и твердых телах. В качестве примера рассмотрим образование мицелл заряженными молекулами ПАВ. Почему образуются мицеллы и какие силы действуют между молекулами поверхностно-активного вещества? Поскольку мицеллы не образуются в газовой фазе, очевидно, что недостаточно рассматривать взаимодействия только между молекулами ПАВ. Растворитель играет определяющую роль в процессе мицеллярного агрегирования, а вода в этом отношении вообще уникальна. На рис. показано, что мицеллы не могут возникать в растворителе с низкой диэлектрической проницаемостью вследствие очень слабого экранирования полярных групп молекул ПАВ и, следовательно, сильного электростатического отталкивания между ними. Можно ли разобраться в механизме мицеллообразования, основываясь на знании взаимодействий между молекулами ПАВ, противоионами и молекулами воды? На качественном уровне, безусловно, да, однако при этом количественно описать систему невозможно. Последующие разделы посвящены подробному рассмотрению типов межмолекулярных взаимодействий, существующих между указанными частицами.

При изучении атомных и молекулярных сил взаимодействия можно не учитывать некоторые силы, действие которых не соответствует размерам молекул; например, для данного случая исчезающе малы гравитационные силы. Для анализа рассматриваемой системы важны только электростатические силы, возникающие при взаимодействии между электронами и протонами различных молекул. Здесь уместно напомнить размеры небольших молекул и величину энергии водородной связи, например, в водном растворе. Грубая оценка размера молекулы воды может быть получена из ее плотности. Оценочное значение диаметра молекулы воды составляет 3 А. Основной вклад в межмолекулярные взаимодействия молекул воды дают диполь-дипольные взаимодействия. Используя известное значение дипольного момента воды, равное 1.85 Д, и принимая усредненное расстояние между молекулами воды равным 3 А, найдем, что типичная энергия взаимодействия составляет 10-20 кДж/моль. Такой расчет, безусловно, является грубым приближением. Но, как станет понятно далее, он приводит к значению, совпадающему по порядку величины с реальной энергией взаимодействия. Этот пример приведен специально, чтобы показать, насколько полезно проводить приближенные оценки при обсуждении межмолекулярных взаимодействий. Следующий расчет, немного более строгий, показывает, как усложненные квантово-механические расчеты помогают разобраться в межмолекулярных взаимодействиях.

Рисунок 2.1 – Структуры октаноата натрия в двух растворителях с различными диэлектрическими проницаемостями: Sr = 20 и Sr = 80.


Мицеллы не могут образовываться в растворе с низкой диэлектрической проницаемостью из-за сильного электростатического отталкивания полярных групп молекул ПАВ

Допустим, что два атома находятся на бесконечном расстоянии друг от друга. Суммарная энергия взаимодействия состоит из индивидуальных вкладов, т.е. энергий изолированных атомов 1 и 2. При приведении в контакт атомы будут взаимодействовать друг с другом, и суммарная энергия взаимодействия выражается уравнением



где U - межмолекулярный потенциал. По определению, он равен работе, которую необходимо совершить для переноса атомов из бесконечного удаления на расстояние г друг от друга:

где F - сила, действующая между двумя атомами. Так как сила является отрицательной производной потенциальной энергии, можно заключить, что сила отталкивания не обязательно определяется энергией отталкивания.

Рассмотрим атом, состоящий из тяжелого, положительно заряженного ядра, окруженного быстрыми электронами, способными мгновенно реагировать на изменения в положении ядра. Согласно приближению Борна-Оппенгеймера, потенциальная энергия зависит только от относительного расположения ядер. В таком приближении можно численно решить уравнение Шрёдингера. На практике этот подход можно применять только к молекулам, содержащим не более 1000 электронов. Для изучения взаимодействий более крупных молекул можно попытаться разделить суммарную энергию на серию наиболее важных вкладов и исследовать каждый вклад отдельно, надеясь на то, что проигрыш в строгости теории компенсируется более глубоким пониманием физической природы молекулярных сил.

Напоминаем, что наше обсуждение изначально ограничено взаимодействием между парами атомов или молекул в вакууме. В таком случае это действительно парные взаимодействия, не зависящие от растворителя и температуры. Далее рассмотрим взаимодействие между двумя молекулами в некоторой среде, например взаимодействие двух ионов в воде. В этом случае взаимодействие зависит от диэлектрической проницаемости растворителя, поэтому взаимодействие становится температурно-зависимым. Такой тип взаимодействий обозначим как эффективный парный потенциал. Химики часто пользуются эффективными потенциалами; например, гидрофобные взаимодействия или экранированные кулоновские взаимодействия описываются такими потенциалами.


  следующая страница >>