Методические указания по самостоятельному изучению дисциплины, задания для контрольной работы и список общедоступной учебной и справ - umotnas.ru o_O
Главная
Поиск по ключевым словам:
страница 1страница 2страница 3
Похожие работы
Название работы Кол-во страниц Размер
Методические указания по выполнению контрольной работы 3 Варианты... 1 238.26kb.
Методические указания по решению типовых задач, а также задания на... 3 1082.21kb.
Методические указания по изучению дисциплины и задания для выполнения... 3 1086.26kb.
Практикум и методические указания к выполнению контрольной работы... 1 190.31kb.
Методические указания разработаны на основании гос впо 653500 «Строительство» 2 404.4kb.
Методические указания к выполнению контрольной работы по учебной... 1 249.79kb.
Методические рекомендации по выполнению контрольной работы 1 41.01kb.
2638 Задания к контрольной работе по дисциплине «теория механизмов... 1 389.35kb.
Методические указания, контрольные задания и типовые примеры по теоретической... 8 994.88kb.
Методические указания по изучению дисциплины для аспирантов, обучающихся... 1 319.42kb.
Методические указания по изучению дисциплины для аспирантов, обучающихся... 2 378.1kb.
Кора Бессер-Зигмунд Харри Зигмунд Coach Yourself Самокоучинг 4 3200.89kb.
Викторина для любознательных: «Занимательная биология» 1 9.92kb.

Методические указания по самостоятельному изучению дисциплины, задания для контрольной - страница №1/3


МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ЧЕЛЯБИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра
«ЭКОНОМИКА ОТРАСЛЕЙ И РЫНКОВ»

ГЕЛЬРУД Я.Д.


Теория игр

Учебное пособие


Челябинск

2012

Гельруд Я.Д. Теория игр: Учебное пособие. – Челябинск: Изд. ЧелГУ, 2012. – 348с.



Учебное пособие включает: теоретический материал, практикум, содержащий примеры решения типовых задач, методические указания по самостоятельному изучению дисциплины, задания для контрольной работы и список общедоступной учебной и справочной литературы.

Теоретический материал представляет собой краткий конспект лекций, содержит необходимые утверждения и формулы (без детального обоснования и доказательств), при этом достаточно подробно демонстрируется применение математического аппарата теории игр для решения конкретных экономических задач.

Учебное пособие рассмотрено и рекомендовано к публикации на заседании кафедры «Экономика отраслей и рынков».
Протокол № от 2012г
Зав. кафедрой Бархатов В.И.
Содержание
Введение 4

1. Основные понятия теории игр 6

2. Математическая модель игры 9

3. Игры с природой 13

4. Биматричные игры 22

5. Понятие коалиционных игр 33

Практический блок 34

Самостоятельная работа студентов 41

Методические рекомендации 41

Контрольные задания 44

Вопросы для подготовки к зачету 45

Глоссарий 45

Список рекомендуемой литературы 49

Приложение (линейное программирование) _____________________50



ВВЕДЕНИЕ

Научно-исследовательская и практическая работа современного экономиста-менеджера немыслима без применения математических моделей и компьютерных технологий.

В дисциплине "Теория игр" рассматриваются задачи нахождения оптимальных решений в условиях конфликта.

Целью данного углубленного математического образования является овладение теоретическими знаниями и приобретение практических навыков по решению конкретных задач управления организацией на основе применения современных экономико-математических методов теории игр, учитывающих высокую степень неопределённости и хозяйственных рисков.

Задачи дисциплины:


  • Привить студентам навыки применения теоретических основ и методологии моделирования методами теории игр в решении практических задач управления организацией.

  • Обучить студентов самостоятельно решать типовые задачи логистики, маркетинга, управления рисками и оптимизации инвестиционного процесса с использованием методов теории игр, при необходимости обращаясь к специальной литературе по данным вопросам.

  • Закрепить и развить базовые навыки подготовки и принятия управленческих решений на основе применения методов теории игр с учётом границ их познавательных возможностей и рисков, связанных с их применением.

В ходе изучения дисциплины «Теория игр» студент должен знать:

  • принципы построения математических игровых моделей;

  • соответствующие методы теории игр, используемые для информационной поддержки принятия управленческих решений по оптимизации хозяйственных рисков, управлению запасами, сбытом, товарными потоками, в том числе в условиях конфликта целей;

владеть:

  • соответствующей терминологией и содержанием понятий в объёме, достаточном для профессиональной коммуникации со специалистами в области математических методов теории игр и их использования в экономике;

  • программным обеспечением решения прикладных задач математической поддержки принятия решений;

иметь представление:

  • об основных направлениях исследований, направленных на развитие методологии и математических методов обоснования и информационной поддержки принятия управленческих решений;

  • о теоретических и прикладных проблемах, ограничивающих применение математических методов теории игр в управлении, и о перспективах их решения;

уметь:

  • интерпретировать формальные записи изученных игровых моделей, модифицировать их применительно к специфике конкретного объекта приложения, объяснять их содержание в процессе профессиональной коммуникации;

  • обосновывать конкретные управленческие решения на основе применяемых математических методов теории игр;

  • оценивать адекватность и достоверность результатов применения изученных экономико-математических методов теории игр в управлении.

Возникнув из задач классической теории вероятностей, теория игр превратилась в самостоятельный раздел в 1945-1955. Таким образом, теория игр - один из новейших разделов математики. Наиболее полное изложение идей и методов теории игр впервые появилось в 1944 в труде Теория игр и экономическое поведение (Theory of Games and Economic Behavior) математика Дж. фон Неймана (1903-1957) и экономиста О.Моргенштерна (1902-1977). Фон Нейман опубликовал несколько работ по теории игр в 1928 и 1935; другим предшественником теории игр по праву считается французский математик Э. Борель (1871-1956). Некоторые фундаментальные идеи были независимо предложены А. Вальдом (1902-1950), заложившим основы нового подхода к статистической теории принятия решений.

Первые приложения теория игр нашла в математической статистике и в решении некоторых возникших во время второй мировой войны военных проблем специального характера. В последние годы значение теории игр существенно возросло во многих областях экономических и социальных наук. В экономике она применима не только для решения общехозяйственных задач, но и для анализа стратегических проблем предприятий, разработок организационных структур и систем стимулирования.

Уже в момент ее зарождения многие предсказали революцию в экономических науках благодаря использованию нового подхода. Эти прогнозы нельзя было считать излишне смелыми, так как с самого начала данная теория претендовала на описание рационального поведения при принятии решений во взаимосвязанных ситуациях, что характерно для большинства актуальных проблем в экономических и социальных науках. Такие тематические области, как стратегическое поведение, конкуренция, кооперация, риск и неопределенность, являются ключевыми в теории игр и непосредственно связаны с управленческими задачами.

В последнее время эти методы проникли и в управленческую практику. Вполне вероятно, что теория игр наряду с теориями трансакционных издержек ( затраты, возникающие в связи с заключением контрактов, в том числе издержки проведения переговоров и принятия решений), и “патрон – агент” (ассиметричные отношения) будет восприниматься как наиболее экономически обоснованный элемент теории организации. Следует отметить, что уже в 80-х годах М. Портер ввел в обиход некоторые ключевые понятия теории, в частности такие, как “стратегический ход” и “игрок”. Правда, эксплицитный (явно выраженный; развернутый) анализ, связанный с концепцией равновесия, в этом случае еще отсутствовал.

Нематематический вариант теории игр представлен в работах Томаса Шеллинга, нобелевского лауреата по экономике 2005 г. Нобелевскими лауреатами по экономике за достижения в области теории игр стали: Роберт Ауманн, Райнхард Зелтен, Джон Нэш, Джон Харсаньи, Томас Шеллинг.


1. Основные понятия теории игр.

Решение многих экономических задач для индивидуального участника экономических отношений (производителя, потребителя, продавца, покупателя и т.п.) сводится к максимизации полезности при условии сбалансированности своего бюджета. Задачи часто выражаются альтернативно, как, например, максимизация выпуска продукции при заданных издержках или минимизация издержек при данном выпуске. Каждый индивидуум старается достичь максимума своей прибыли, и на его действия не оказывают влияния действия других индивидуумов.

Однако в других экономических ситуациях возникают конфликты интересов, которые должны быть разрешены. Конфликты интересов возникают между продавцом и покупателем, между конкурирующими продавцами (производителями). Более сложные ситуации возникают, если образуются коалиции лиц, участвующих в столкновении интересов, например, в том случае, когда ставки заработной платы определяются союзами рабочих и предпринимателей. Решение таких проблем поднимает более сложные вопросы о стратегиях поведения участников, и соответствующие математические формулировки этих проблем и методы их решения составляют теорию игр.

Игра – это совокупность правил и процедур, которым подчиняются ее участники для достижения своей цели. Каждый участник (игрок) имеет множество возможных ходов, выбрать один из них – значит сделать ход. Партия – это последовательность ходов, сделанных в соответствии с правилами игры и приводящих ее к конечному состоянию. Во многих играх достижение цели сопровождается каким-нибудь выигрышем. Выигрыш в игре будем рассматривать в количественном выражении, причем отрицательное значение выигрыша интерпретируется как проигрыш.



Игра с нулевой суммой – это такая игра, в которой сумма выигрышей участников равна нулю.

Стратегия – это установленный игроком метод выбора решения при каждом ходе в течение игры.

Будем рассматривать конечную игру, то есть игру с конечным числом ходов и конечным числом стратегий.



Платежная матрица – это таблица, которая определяет, какие выигрыши должны быть получены игроками после завершения игры.

Рассмотрим игру двух лиц с нулевой суммой.

Обозначим игроков А и В, и пусть А имеет n вариантов хода, а В имеет m вариантов. Пусть игра заключается в том, что игроки делают по одному ходу и А выигрывает у В сумму aij, если А выбрал вариант i (i=1,2,…,n), а В выбрал вариант j (j=1,2,…,m). Тогда платежная матрица для игрока А имеет вид:



a11 a12a1m

A = [aij ] = a21 a22a2m

………..


an1 an2anm

Если выигрыш игрока А равен проигрышу игрока В, возникает игра двух лиц с нулевой суммой. В этом случае платежную матрицу для игрока В нет необходимости рассматривать самостоятельно, так как В = – А.

Лучшая (оптимальная) стратегия игрока заключается в выборе такого варианта хода (из своих возможных), при котором будет получен максимальный выигрыш при отсутствии информации о ходе противника. Определение оптимальных стратегий для игроков составляет решение игры.

Игрок следует чистой стратегии в повторяющихся партиях, если в каждой партии он выбирает из всех альтернатив одну и ту же, использование комбинаций чистых стратегий называется смешанной стратегией. Для решения игры будем использовать критерий минимакса – максимина. Этот критерий предписывает игроку А выбирать такую стратегию (чистую или смешанную), которая максимизирует его минимальный выигрыш, причем минимум берется по всем стратегиям игрока В. Игрок В в свою очередь выбирает стратегию, которая минимизирует его максимальный проигрыш, где максимум берется по стратегиям игрока А.

Рассмотрим применение данного критерия на примере.

Игрок В

Пусть задана платежная матрица, определяющая выигрыш –2 –4

игрока А. Если игрок А выбирает первую стратегию, его А= –1 3

выигрыш будет не меньше min–2, –4= –4 независимо 1 2

от поведения игрока В. При выборе игроком А второй стратегии гарантированный выигрыш будет равен min–1, 3= –1, и, наконец, если он выберет третью стратегию, гарантированный выигрыш будет равен min1,2= 1. Тогда игрок А, выбирая третью стратегию, максимизирует свой минимальный выигрыш. Его значение равно mах–4, –1, 1=1. Выбранная игроком А стратегия называется максиминной стратегией, а соответствующее ей значение выигрыша – максиминным (нижним) значением игры.

Игрок В хочет минимизировать свой проигрыш. Выбрав первую стратегию, он может проиграть не более чем mах–2, –1, 1=1 независимо от выбора своего противника. При второй стратегии проигрыш составит не более mах–4, 3, 2=3. Игрок В выберет тогда первую стратегию, для которой проигрыш составит min1, 3=1. Эта стратегия называется минимаксной, а соответствующее ей значение проигрыша игрока В – минимаксным (верхним) значением игры.

Если нижнее значение игры совпадает с верхним значением игры, то имеет место ситуация равновесия, в этом случае задача имеет решение в чистых стратегиях, в противном случае необходимо искать оптимальную смешанную стратегию.

Рассмотрим еще несколько примеров матричных игр:

1. "Орлянка". Два игрока одновременно кладут на стол по монете "орлом" или "решеткой" вверх. Если "картинки" совпадут, то выигрывает первый игрок, в противном случае второй. Если в каждой отдельной партии разыгрывается некоторая единичная ставка, то матрица данной игры примет вид:

A=.

2. "Камень, мешок, ножницы". Это одна из древнейших тюремных игр, в которую было принято играть на пальцах. Количество выброшенных пальцев от одного до трех соответствовало выбранному предмету, при этом камень побеждал ножницы, мешок–камень и ножницы – мешок. Если игроками выбирались одинаковые предметы, то результат партии признавался ничейным. Матрица выигрышей этой игры имеет следующий вид:

A=.

3. Не заботясь о содержательном смысле игры, просто напишем некоторую, специальным образом построенную матрицу выигрышей

A=.

Если в первых двух играх ситуации равновесия не существуют, так как нижнее значение игры равно -1, а верхнее значение игры равно 1, то в третьем примере

maxmin{aij}=max{-2,-2,2,-2}=2 и minmax{aij}=min{4,2,3}=2,

т.е. существует ситуация равновесия. Следовательно, значением этой игры будет 2, а оптимальными стратегиями для первого игрока выбор третьей строки и для второго – второго столбца матрицы игры.

Отметим, что матричная игра, для которой существует ситуация равновесия, малоинтересна (и редко случается на практике), так как рациональные действия игроков в ней однозначно предопределены. Если разыгрывается несколько партий такой игры, то каждый раз исход игры будет неизменным. Если же разыгрывается несколько партий в "орлянку", то ни один из игроков не рискнет сохранять неизменной выбираемую стратегию, так как подобные действия легко "расшифровываются" противником. Возможность изменять от партии к партии свои стратегии и составляют суть любой игры, делают ее исход непредсказуемым. Однако в этом случае возникает проблема определения решения игры.


2. Математическая модель игры.

В математических обозначениях «максимин для А» выражается mахiminj aij, аналогично, «минимакс для В» есть minjmахi aij, причем, очевидно, имеет место mахi minj aij  minjmахiaij. В случае, когда имеет место равенство, т.е. mахi minj aij = minjmахi aij =аi0j0, соответствующие чистые стратегии (i0 для игрока А и j0 для В) будут оптимальными, а про игру говорят, что она имеет седловую точку. Тогда аi0j0 является значением игры. Легко видеть, что игра имеет седловую точку тогда и только тогда, когда в платежной матрице имеется элемент аi0j0, наименьший для всех элементов своей строки i0 и наибольший для всех элементов своего столбца j0.

При отсутствии седловой точки невозможно получить оптимальное решение, пользуясь чистыми стратегиями. В этом случае для получения решения игры будем пользоваться смешанными стратегиями, которые заключаются в применении чистых стратегий с некоторыми частотами (вероятностями). Пусть р1, р2,.., рn и q1,q2,..,qm – наборы вероятностей, с которыми игроки А и В соответственно выбирают свои чистые стратегии. Естественно

=1, рi , qj ≥0 для всех i и j.

Если игрок А выбирает свои чистые стратегии с вероятностями рi, то его ожидаемый выигрыш должен составить



a11р1+ a21р2+…+ an1рn ,

при ответном выборе игроком В своей первой чистой стратегии,



a12р1+ a22р2+…+ an2рn ,

при ответном выборе игроком В своей второй чистой стратегии, и т.д.



a1mр1+ a2mр2+…+ anmрn

при выборе игроком В m-й чистой стратегии. С другой стороны, если игрок В выбирает свои чистые стратегии с вероятностями qj, то его ожидаемый проигрыш должен составить



a11q1+ a12q2+…+ a1mqm ,

если игрок A выберет свою первую чистую стратегию, и т.д.



an1q1+ an2q2+…+ anmqm,

при выборе игроком A n-й чистой стратегии.

Если игрок А выбрал стратегию (р1,р2,..,рn) и при этом игрок В выбрал (q1,q2,..,qm), то ожидаемый выигрыш игрока А (он же проигрыш игрока В) составит

g= .

Тогда игрок А при выборе рi стремится максимизировать свой наименьший ожидаемый выигрыш по столбцам, тогда как игрок В выбирает qj с целью минимизировать наибольший ожидаемый проигрыш по строкам. Справедлива теорема фон.Неймана, которую мы примем без доказательств, утверждающая, что для любой конечной игры существуют оптимальные стратегии игроков А (р1*,р2*,..,рn*) и В (q1*,q2*,..,qm*), при этом максимум наименьшего ожидаемого выигрыша игрока А совпадает с минимумом наибольшего ожидаемого проигрыша игрока В (обозначим это значение игры через g). Таким образом, математическую модель конечной игры для игрока А можно представить в следующем виде:

Найти такие рi ≥0, для которых выполняются соотношения



р1+р2+…+рn=1,

a11р1+ a21р2+…+ an1рn ≥ g,

a12р1+a22р2+…+an2рn≥g, (1)

……………………. ……



a1mр1+ a2mр2+…+ anmрn≥ g,

и функция Z=g принимает максимальное значение.

Упростим полученную задачу, разделив все ограничения (1) на значение игры g > 0 и положив хi =рi/g для всех i. (Проведение аналогичных рассуждений для случая g ≤ 0 предоставляется читателю). В силу того, что

max g =min 1/g = min(р1/g+р2/g+…+рn/g) = min(x1+x2+…+xn)

задача принимает вид

минимизировать Z= x1+x2+…+xn

при ограничениях

a11x1+a21x2+…+an1xn ≥ 1,

a12x1+a22x2+…+an2xn ≥ 1, (2)

……………………. ……



a1mx1+a2mx2+…+ anmxn≥ 1,

x1, x2,…,xn ≥ 0.

Мы получили задачу линейного программирования (Приложение).



Обратите внимание: строка ограничения формируется из столбца платежной матрицы!

Решая ее (например, симплекс–методом), находим оптимальное решение x1*, x2*,…,xn*, откуда, разделив на Z*=x1*+x2*+…+xn*, получаем оптимальную стратегию для игрока А (р1*,р2*,..,рn*), которая заключается в применении i-й чистой стратегии с частотой рi*= хi*/ Z*.

Двойственная ЗЛП – максимизировать F=y1+y2++ym→max;

при ограничениях



a11y1+ a12y2+ …+ a1mym ≤1;

a21y1+ a22y2+ …+ a2mym ≤1; (3)

…………………………..



an1y1+ an2y2+ …+ anmym ≤1;

y1≥0; y2≥0; ym ≥0.

Здесь строка ограничения формируется из строки платежной матрицы.

Решая данную ЗЛП, находим оптимальное решение у1*, у2*,…,уm*, откуда, разделив на F*=y1*+y2*+…+ym*, получаем оптимальную стратегию для игрока B (q1*, q2*,.., qm*), которая заключается в применении j-й чистой стратегии с частотой qj* = yj*/ F*.

Затем находим цену игры g =1/Z*=1/F*.

Правила упрощения платежной матрицы:

Если к каждому элементу платежной матрицы прибавить одно и то же число, то решение (р1*,р2*,..,рm*) не изменится, а цена игры изменится ровно на добавленную величину.

Если каждый элемент платежной матрицы умножить на одно и то же число (не 0), то решение (р1*,р2*,..,рm*) не изменится, а цена игры изменится ровно во столько же раз.

Если какая-либо строка платежной матрицы доминирует над другой строкой (или линейной комбинацией строк), то доминируемые строки не войдут в оптимальную смешанную стратегию и их можно удалить.



Из двух стратегий та "лучше" (доминирует), которая гарантирует больший выигрыш независимо от действий противника (исходов). Ясно, что доминирующая над всеми строка, если она существует, будет являться чистой оптимальной стратегией первого игрока. Однако, в общем случае, строки, доминирующей над всеми другими строками, может и не существовать.

Проиллюстрируем использование рассмотренных методов при описании и решении некоторых состязательных задач.



Пример 1. Рассмотрим тотализатор на ипподроме. Пусть выплаты в случае победы одной из трех лошадей относятся к ставке как 1:1, 3:1 и 4:1. Тогда платежная матрица игрока на скачках примет вид:

1 –1 –1 Если прибавить к каждому элементу матрицы число К, то

А=–1 3 –1 оптимальные стратегии не изменятся, а значение игры

–1 –1 4 увеличится на К. Для упрощения матрицы добавим

К=1, тогда получим:



2 0 0 В соответствие с (2) задача принимает вид:

А= 0 4 0 минимизировать Z= x1+x2+x3

0 0 5 при ограничениях

2x1+ 0x2+0x3 ≥ 1,

0x1+ 4x2+0x3 ≥ 1,

0x1+ 0x2+5x3≥ 1,

x1, x2,x3 ≥ 0.

Легко заметить, что решение этой задачи:



x1*=1/2, x2*=1/4, x3* =1/5.

Значение упрощенной игры 1/Z*=1/(x1*+x2*+x3*)=20/19, откуда (при К=1) значение исходной игры равно 20/19 – 1 = 1/19,



р1*=х1*/Z*=10/19, р2*=х2*/Z*=5/19, р3*=х3*/Z*=4/19.

Таким образом, оптимальная стратегия игрока на скачках в данном примере заключается в смешанной стратегии делать ставки на всех трех лошадей в пропорции 10:5:4, при этом выигрыш игрока (игра имеет положительное значение!) будет равным 1/19 суммы его ставок, независимо от результата гонок. (Если цена игры отрицательна, то не следует в нее играть, так как даже при оптимальной стратегии гарантирован проигрыш, правда, минимальный).



Пример 2. Предлагается три варианта инвестиций в сельское хозяйство и прогноз получения доходов за год (дивиденды и повышение стоимости капитала) при различных перспективах на урожай.

Варианты инвестиций

Перспективы на урожай

хорошие

средние

плохие

1. АО «Сельхозтехника»

40

30

20

2. АО «Агроимпорт»

0

100

250

3. АО «Агроэкспорт»

150

50

–50

Доходы в платежной матрице приведены в процентах от вложенного капитала. Как распорядиться капиталом, чтобы получить наибольший доход? Искомые переменные р1, р2, р3 определяют пропорции вложений. Заметим, что элементы первой строки платежной матрицы меньше средних арифметических соответствующих элементов второй и третьей строк, и она может быть удалена (первый вариант инвестиций заведомо неэффективен по сравнению с комбинацией второго и третьего вариантов – вкладывать деньги поровну во второй и третий проект). Получаем задачу линейного программирования

минимизировать Z= x2+x3

при ограничениях


0x2 + 150x3 ≥ 1,

100x2+50x3 ≥ 1,

250x2 – 50x3≥ 1,



x1=0, x2, x3 ≥ 0.

Решая данную задачу стандартными средствами (см. Приложение 1) получим следующее решение

x1*=0, x2*=1/150, x3* =1/150.

Значение игры 1/Z*=1/( x1*+x2*+x3*)=150/2=75, откуда



р1*=0, р2*=х2*/Z*=75/150=1/2, р3*=х3*/Z*=75/150=1/2.

Таким образом, оптимальной стратегией является вложение капитала равными долями во второй и третий варианты, при этом гарантированный доход составит 75%.


3. Игры с природой

Антагонистические конфликты в реальной жизни встречаются очень редко за исключением искусственно созданных конфликтных ситуаций в виде спортивных и азартных игр. Однако, часто бывает удобно в задачах принятия решения в условиях неопределенности наделить случайный фактор "разумом" и считать, что он активным образом противодействует достижению поставленной цели. В этом случае возникает антагонистическая игра с некоторым воображаемым противником, которого принято называть "природой". Такая постановка задачи позволяет оценить возможности достижения цели при самых неблагоприятных условиях.

Рассмотрим следующий пример. Пусть у фермера имеется S гектаров пахотных земель, на которых он может выращивать различные культуры K1, K2,..., Kn. Урожайность культур, а соответственно и доход, будут существенным образом зависеть от погодных условий в весенне-летний период.

На основе многолетних наблюдений можно классифицировать возможные для данной местности погодные условия P1, P2,..., Pm и объявить их стратегиями "природы". Определим матрицу выигрышей A={aij} как ожидаемый доход с участка при посадке на нем i-ой культуры и j-ых погодных условиях.

Не исключено, что получившаяся матричная игра будет иметь решение в чистых стратегиях. Это будет означать, что для данной местности существует культура, выращивание которой дает наибольший доход. Действительно, нечто подобное в мире случается, существуют целые страны, выращивающие только рис, или хлопок, или кофе, или цитрусовые и т.п. Россия, к сожалению, почти всюду является зоной рискованного земледелия, поэтому на существование решения игры в чистых стратегиях надеяться не приходится.

Однако, согласно теореме фон.Неймана, всегда будет существовать решение в смешанных стратегиях. Пусть g* – значение игры и (р1*,р2*,..,рm*) оптимальная смешанная стратегия фермера.

Тогда площадь, выделяемая под каждую культуру, будет соответственно равна Si=S∙рi га.

Если "природа" выберет активную (оптимальную с точки зрения игрока В) стратегию, то фермер все равно реализует значение игры. Поскольку "природа" реальным разумом не наделена и не обязательно будет противодействовать фермеру, то не исключено, что будет реализована пассивная стратегия. Естественно, в этом случае доход фермера превысит ожидаемый.

Игры с "природой" могут быть использованы также для решения задач выбора оборудования для предприятия, определения состава научно-исследовательского коллектива, выбора проектов строительства в сейсмоопасной зоне и т.п. В этих играх компоненты оптимальной смешанной стратегии задают необходимые пропорции.

В случае, когда при игре с природой необходимо выбрать одно из альтернативных решений, характеризующееся различными исходами (смешение стратегий по логическим или техническим причинам невозможно), то возникает задача принятия решений в условиях неопределенности и риска. Если вероятности исходов не известны, это ситуация неопределенности, при известных вероятностях исходов – ситуация риска.

Рассмотрим сначала правила принятия решений в условиях неопределенности (без использования численных значений вероятностей исходов – правила максимакса, Вальда, Сэвиджа, Лапласа).

Пример 3. Пусть себестоимость пирожного в нашей кондитерской составляет 7 руб., свеженькое продаем за 13 руб., а невостребованное за день сдаем на свиноферму за 3 руб. Сколько пирожных надо производить в день, если известно лишь, что спрос на них составляет от 1 до 5?

Составим таблицу возможных доходов (табл.1), расположив построчно наши альтернативы (производить от 1 до 5 пирожных), а в столбцах исходы (продать от 1 до 5), имея в виду, что доход от продажи одного пирожного составляет 6 руб., а потери при не продаже составляют 4 руб.



Таблица 1 – Доход (прибыль) в день.

Объем производства

Возможные исходы: спрос пирожных в день

Среднее

1

2

3

4

5

6

1

6

6

6

6

6

6

2

2

12

12

12

12

10

3

–2

8

18

18

18

12

4

–6

4

14

24

24

12

5

–10

0

10

20

30

10

Правило максимакса – максимизация максимального дохода. В каждой альтернативе найдем исход с максимальной оценкой (в табл.1 они все находятся в последнем столбце), и выбираем альтернативу, позволяющую получить самый большой доход. В нашем примере это соответствует решению производить 5 пирожных. Данный подход использует азартный карточный игрок (или пан или пропал).

Правило максимина (Вальда) – максимизация минимального дохода. В каждой альтернативе найдем исход с минимальной оценкой (в табл.1 они все находятся в первом столбце), и выбираем альтернативу, позволяющую максимизировать доход в самых худших для нас исходах. В нашем примере это соответствует решению производить 1 пирожное. Это очень осторожный подход к принятию решений – стратегия крайнего пессимиста.

Правило, основанное на принципе неопределенности Лапласа. В соответствие с этим принципом предполагается, что все исходы равновозможные, поэтому выбирается альтернатива, дающая максимальный средний доход. В нашем примере этому правилу отвечают альтернативы выпускать три или четыре пирожных в день, имеющие средний доход 12 (колонка 6 табл.1).

Правило минимакса (Сэвиджа) – минимизация максимально возможных потерь. Составим таблицу возможных потерь или упущенной выгоды (табл.2). Она составляется из таблицы доходов следующим образом:

для каждого исхода (столбца) находится максимальный доход, затем вычисляются максимально возможные потери всех альтернатив данного исхода (из максимального дохода вычитается доход соответствующей альтернативы).

Для каждой альтернативы находятся максимально возможные потери (выделены жирным цветом). Затем выбирается та альтернатива, которой соответствует минимальное значение максимальных потерь. В данном примере этому правилу подходят альтернативы выпускать три или четыре пирожных в день.
Таблица 2 – Возможные потери в день.


Объем производства

Возможные исходы: спрос пирожных в день

1

2

3

4

5

1

0

6

12

18

24

2

4

0

6

12

18

3

8

4

0

6

12

4

12

8

4

0

6

5

16

12

8

4

0

Критерий Гурвица – компромиссный способ принятия решений.

Этот способ принятия решения представляет собой компромисс между осторожным правилом максимина (Вальда) и оптимистичным правилом максимакса. ЛПР задает уровень пессимизма α (вероятность худшего исхода), тогда оптимистичному исходу дается вероятность 1–α, и выбирается альтернатива, дающая наибольший средневзвешенный доход при наличии только пессимистического и оптимистического исходов с заданными вероятностями.

Так, в нашем примере, худший исход – спрос на одно пирожное в день, лучший – пять пирожных. Зададим уровень пессимизма 0.4, тем самым мы предполагаем, что на каждые 4 дня худшего спроса в одно пирожное приходится 6 дней лучшего спроса в 5 пирожных. Рассчитаем средневзвешенные доходы для каждой альтернативы (табл. 3).

Таблица 3 – Критерий Гурвица.



Объем производства

Доход при спросе в день

вероятность исхода

Средневзвешенный доход

1

5

0.4

0.6

1

6

6

2.4

+3.6

=6

2

2

12

0.8

+7.2

=8

3

–2

18

–0.8

+10.8

=10

4

–6

24

–2.4

+14.4

=12

5

–10

30

–4.0

+18.0

=14

В данном случае максимальный средневзвешенный доход имеет решение выпускать пять пирожных в день.

Правила принятия решений с использованием численных значений вероятностей исходов.

Пусть теперь нам известны вероятности всех исходов.

Например, дана статистика продаж за последние 50 дней (табл. 4).

Таблица 4 – Относительные частоты (вероятности) дневного спроса на пирожные.



Продано пирожных в день

1

2

3

4

5

Частота

5

10

15

15

5

Относительная частота (вероятность)

0.1

0.2

0.3

0.3

0.1



Правило максимальной вероятности – максимизация наиболее вероятных доходов.

Наибольшая вероятность 0.3 соответствует спросу в три и четыре пирожных в день. Рассмотрим теперь доходы при каждом из этих исходов и выберем альтернативу, дающую наибольший доход (см. табл. 1). При спросе в 3 пирожных наибольший доход дает альтернатива производить 3 пирожных (доход составляет 18 руб.), при спросе в 4 пирожных наибольший доход дает альтернатива производить 4 пирожных (доход составляет 24 руб.), следовательно, по этому правилу надо производить 4 пирожных в день.



Оптимизация математического ожидания (правило Байеса) Выбирается решение либо с наибольшим ожидаемым доходом, либо с наименьшими возможными потерями. Использование критерия математического ожидания наиболее приемлемо в случаях многократного принятия решения в одинаковых условиях, позволяя максимизировать среднюю прибыль (или минимизировать средние убытки) при большом временном промежутке. В соответствии с законом больших чисел (который проходят в разделе Теория вероятностей дисциплины «Математики») при многократном принятии решения мы как раз и получим математическое ожидание (среднее значение) дохода либо потерь.

а) Максимизация ожидаемого дохода.

Составим таблицу ожидаемых доходов для каждой альтернативы (табл.5).

Таблица 5. Возможный доход (вероятность×доход из табл.1).


Объем производства

Возможные исходы: спрос пирожных в день

Ожидаемый доход

1

2

3

4

5

1

0.6

1.2

1.8

1.8

0.6

6

2

0.2

2.4

3.6

3.6

1.2

11

3

–0.2

1.6

5.4

5.4

1.8

14

4

–0.6

0.8

4.2

7.2

2.4

14

5

–1.0

0.0

3.0

6.0

3.0

11

Максимальное значение ожидаемого дохода 14 руб. в день, следовательно, используя критерий максимизации ожидаемого дохода необходимо производить три или четыре пирожных в день.

б) Минимизация возможных потерь.

Составим таблицу возможных потерь для каждой альтернативы (табл.6).

Таблица 6 Возможные потери (вероятность×потери из табл. 2).


Объем производства

Возможные потери: спрос пирожных в день

Ожидаемые возможные потери

1

2

3

4

5

1

0

1.2

3.6

5.4

2.4

12.6

2

0.4

0

1.8

3.6

1.8

7.6

3

0.8

0.8

0

1.8

1.2

4.6

4

1.2

1.6

1.2

0

0.6

4.6

5

1.6

2.4

2.4

1.2

0

7.6

Минимальные ожидаемые возможные потери равны 4.6 руб. в день, т.е. наилучшее решение – также как и в случае а, производить три или четыре пирожных в день.

Значения вероятностей из табл.4 основаны на статистической либо экспертной информации, которая подвержена изменениям. Исследование зависимости выбора решения от изменений значений вероятностей называется анализом чувствительности решения.

Таблица 7. Зависимость выбора решения от изменений значений вероятностей

Наименование показателей



Возможные решения:

объем производства в день



1

2

3

4

5

Базовые вероятности

0.1

0.2

0.3

0.3

0.1

Ожидаемый доход в день

6

11

14

14

11

Альтернативные вероятности (1)

0.2

0.2

0.2

0.2

0.2

Ожидаемый доход в день (1)

6

10

12

12

10

Альтернативные вероятности (2)

0.1

0.2

0.2

0.2

0.3

Ожидаемый доход в день (2)

6

11

14

15

14

В альтернативном варианте (1) решение, дающее максимальный доход, не претерпело изменений, хотя средняя прибыль снизилась с 14 руб. до 12 руб. В альтернативном варианте (2) решение изменилось, наибольший средний доход 15 руб. дает альтернатива производить 4 пирожных в день. Таким образом, выбор решения оказался нечувствителен к варианту (1) изменений вероятностей, но чувствителен к варианту (2).

Пример 4. Рассмотрим схожую с предыдущей задачу управления запасами. Пусть спрос на некоторый товар описывается следующим рядом распределения вероятностей:

Спрос

0

1

2

3

4

5

Вероятность спроса

0.10

0.15

0.40

0.15

0.10

0.10

Определить уровень запасов, при котором вероятность полного истощения запасов не превышает 0.45. Определить также уровень запасов при условии, что средние значения дефицита и превышения запасов не должны быть больше 1 и 2 единиц соответственно.

Будем анализировать данную задачу как игру уровня запасов со спросом. Для каждого значения уровня запасов последовательно вычисляем вероятность его полного истощения. Она равна сумме вероятностей событий, когда спрос превышает данный запас. Затем вычисляем средний дефицит для каждого уровня запаса. Для уровня 0 средний дефицит равен 10.15+20.4+30.15+40.1+50.1=2.3, для уровня 1 получаем 10.4+20.15+30.1+40.1=1.4 и т.д. Аналогично вычисляем среднее превышение запасов, например, для уровня 0 превышения нет, для уровня 1 среднее превышение составляет 10.1=0.1, для уровня 2 получаем 20.1+10.15=0.35 и т.д. Сведем все результаты расчетов в таблицу 8.

Таблица 8


Уровень

запаса


Q

Вероятность

полного


истощения

Средний

дефицит


Среднее

превышение

запасов


0

0.9

2.3

0

1

0.75

1.4

0.1

2

0.35

0.65

0.35

3

0.2

0.3

1.0

4

0.1

0.1

1.8

5

0

0

2.7

Из табл. 8 получаем ответы на все интересующие нас вопросы:

При Q ≥2 вероятность полного истощения запасов не превышает 0.45. При 4≥Q≥2 средние значения дефицита и превышения запасов не больше 1 и 2 единиц соответственно.



Пример 5. Введем в пример 4 условие, чтобы ожидаемый дефицит был меньше превышения хотя бы на 1.

Тогда из табл. 8 находим уровень запасов, удовлетворяющий этому условию, Q ≥4.



Стоимость достоверной информации.

Неопределенность при принятии решений может быть уменьшена путем сбора дополнительной информации, за которую нужно платить. Максимальная сумма денег, которую стоит заплатить, и является стоимостью достоверной информации. Так, если бы мы в нашей кондитерской заранее знали спрос на следующий день, то готовили бы столько пирожных, сколько обеспечивают максимальный доход (см. диагональ табл. 1). В этом случае ожидаемый доход был бы равен

6×0.1+12×0.2+18×0.3+24×0.3+30×0.1=18.6

Стоимость достоверной информации есть разница между этим ожидаемым доходом и максимальным ожидаемым доходом без достоверной информации. Это число 18.6 – 14 = 4.6 равно минимальным ожидаемым возможным потерям. Таким образом, наша кондитерская может заплатить 4.6 руб. в день за информацию о спросе да следующий день, т.е. это максимальная плата за маркетинговые услуги.

Использование математического ожидания и среднего квадратичного отклонения для оценки риска.

Если решение принимается однократно, то необходимо определить степень отклонения от математического ожидания, т.е. вычислить дисперсию и среднее квадратичное отклонение для оценки риска.

Чем меньше среднее квадратичное отклонение, тем больше уверенности, что принятое решение даст результат, близкий к математическому ожиданию.

Рассмотрим применение среднего квадратичного отклонения для оценки риска на небольшом примере.



Пример 6. Предприятие производит некоторую продукцию, спрос на которую в течение месяца 6, 7, 8 или 9 ящиков с вероятностями 0,1; 0,3; 0,5; 0,1 соответственно. Затраты на производство одного ящика равны 45 тыс. руб. Предприятие продает один ящик по цене 95 тыс. руб. Если ящик с продукцией не продается в течение месяца, то она портится и предприятие не получает дохода. Сколько ящиков следует производить?

Рассчитаем доходы по каждой альтернативе и каждому исходу, математическое ожидание дохода и среднее квадратичное отклонение по каждой альтернативе и занесем в табл. 9.

Поясним расчеты для альтернативы «производить 8 ящиков».

Если спрос 6 ящиков, то доход составит 6×95 – 8×45 = 210 тыс. руб.

Если спрос 7 ящиков, то доход составит 7×95 – 8×45 = 305 тыс. руб.

Если спрос 8 ящиков, то доход составит 8×95 – 8×45 = 400 тыс. руб.

Если спрос 9 ящиков, то доход тот же, так как произведено всего 8.

Таблица 9.



Объем производства

(ящиков)


Возможные исходы: спрос ящиков в месяц

Ожидаемый доход

(тыс. руб.)



Среднее квадратичное

отклонение



6 (0,1)

7 (0,3)

8 (0,5)

9 (0,1)

6

300

300

300

300

300

0

7

255

350

350

350

340,5

28,5

8

210

305

400

400

352,5

63,73

9

165

260

355

450

317

76

Ожидаемый доход 210×0,1+305×0,3+400×0,5+400×0,1=352,5.

Дисперсия дохода составит (210 –352,5)2×0,1 + (305–352,5)2×0,3 +

+ (400–352,5)2×0,5+(400–352,5)2×0,1=4061,25.

следующая страница >>