Методические указания для студентов 1 курса Одесса 2008 Составители: д-р ф-м н., проф. Варбанец П. Д - umotnas.ru o_O
Главная
Поиск по ключевым словам:
страница 1страница 2
Похожие работы
Название работы Кол-во страниц Размер
Методические указания по выполнению курсовых работ по истории искусств... 1 384.3kb.
Методические указания для студентов 2 курса заочного отделения специальности... 3 626.53kb.
Методические указания, контрольные задания и типовые примеры по теоретической... 8 994.88kb.
Методические указания для выполнения практических заданий 6 1357.53kb.
Методические указания к семинарским занятиям 1 236.28kb.
Методические указания и задания к выполнению лабораторных работ для... 1 918.56kb.
Методические указания по самостоятельной работе Красноярск сфу 2011 2 510.49kb.
Методические указания к семинарским занятиям Красноярск сфу 2011 2 399.28kb.
Методические указания к семинарским занятиям Красноярск сфу 2011 удк 1 218.77kb.
Методические указания к семинарским занятиям 1 225.66kb.
Методические указания к самостоятельной работе Красноярск сфу 2011... 1 278.45kb.
Федеральное государственное унитарное предприятие 2 309.21kb.
Викторина для любознательных: «Занимательная биология» 1 9.92kb.

Методические указания для студентов 1 курса Одесса 2008 Составители: д-р ф-м н., - страница №1/2



Одесский национальный университет им. И. И. Мечникова

Институт математики, экономики и механики



линейная алгебра
( решение типовых задач)
Часть 2

Методические указания для студентов 1 курса


Одесса – 2008



Составители: д-р ф-м н., проф. Варбанец П.Д.,

к-т ф-м н., доц. Савастру О.В.
Рецензенты: д-р ф-м н., проф. Евтухов В.М.,

к-т ф-м н., доц. Белозеров Г.С.

Рекомендовано к печати

Ученым советом ИМЭМ Одесского национального университета им. И. И. Мечникова

протокол № 1 от 5 февраля 2008 г.

.
СОДЕРЖАНИЕ

Обозначения…………………………………………………4

1. Линейные пространства …………………………………...5

1.1. Линейные пространства и подпространства………….5

1.2. Базис пространства, его размерность…………………6

1.3. Координаты вектора в данном базисе…………….…11

1.4. Сумма и пересечение подпространств………………12

2. Евклидовы и унитарные пространства ………….…........17

2.1. Процесс ортогонализации Шмидта………………….17

2.2.Ортогональные дополнения…………………………..19

2.3. Ортогональная проекция и перпендикуляр на подпространство……………………………………………………..20



3. Операторы в линейных пространствах…………….........23

3.1. Образ, ядро линейного оператора……………………28

3.2. Матрица линейного оператора в данных базисах…..29

3.3. Собственные векторы и собственные значения..…...31

3.4. Канонический корневой базис и жорданова нормальная форма…………………………………………………….34

4. Операторы в евклидовых и унитарных пространствах..40

5. Приведение двух квадратичных форм к каноническому виду…………………………………………………………...45

Список литературы………………………………………….51


Линейные пространства и линейные операторы представляют собой начало абстрактной части математики, с которой студенту в дальнейшем неоднократно придется иметь дело.

Эти методические указания по самостоятельной работе студентов предполагают использование следующего задачника:

И.В.Проскуряков. Сборник задач по линейной алгебре. М., Наука, 1974.



ОБОЗНАЧЕНИЯ

В дальнейшем мы будем придерживаться следующих обозначений (если в тексте нет специальной оговорки):



  • - произвольные пространства над некоторым полем ;

  • - пространство - мерных строк (столбцов) с элементами из поля над полем (арифметическое пространство).

В частности

  • - действительное - мерное арифметическое пространство;

  • - комплексное - мерное арифметическое пространство;

  • - пространства геометрических векторов (прямой, плоскости, пространства);

  • - евклидовы пространства (с указанием размерности или без него);

  • - подпространства данного пространства (- индекс, не связанный с размерностью);

  • векторы рассматриваемого пространства; - нулевой вектор;

  • скаляры из данного поля, - нуль этого поля;

  • линейные операторы, в отдельных случаях – матрицы;

  • матрицы линейных операторов в базисах соответственно ;

  • размерности пространств ;

  • ранги операторов (матриц) ;

  • скалярное произведение в данном пространстве;

  • векторное произведение в данном пространстве .



  1. ЛИНЕЙНЫЕ ПРОСТРАНСТВА.

Основными типами задач этого параграфа являются следующие:

А) выяснение вопроса, будет ли данное множество с указанными операциями линейным пространством, подпространством;

В) выделение базиса пространства, определение его размерности;

С) вычисление координат вектора в данном базисе;

D) нахождение суммы, пересечения подпространств, их размерностей и базисов.




    1. Линейные пространства и подпространства.

Для решения задач первой группы необходимо знание аксиом линейного пространства (вообще, не следует приниматься за решение задач любого раздела, не ознакомившись предварительно с основными понятиями и теоремами данного раздела). Заметим, что в группе аксиом линейного пространства содержатся требования неограниченной применимости, однозначности и замкнутости линейных операций, которые не выделены под отдельными номерами. Распространенная ошибка: забывают проверить выполнение этих условий.

В тех условиях, когда данное множество состоит из векторов некоторого известного пространства, полезной является следующая теорема (критерий подпространства):

Теорема. Подмножество векторов пространства над полем является подпространством тогда и только тогда, когда


  1. замкнуто относительно сложения, т.е. ,

  2. замкнуто относительно умножения векторов на любые скаляры из основного поля : .

Некоторые из задач требуют хорошего знания других разделов курса (элементарной теории матриц, квадратичных форм, систем линейных уравнений). Ниже мы подробнее остановимся на одной из этих задач.


    1. Базис пространства, его размерность.

Построение базиса пространства, подпространства несколько упрощается, если мы располагаем некоторыми представлениями о размерности пространства, подпространства. Одним из наводящих соображений здесь может быть следующее. Подмножество векторов пространства выделяется из с помощью дополнительных условий, накладываемых на векторы. При этом, чем больше таких условий, тем меньшей, вообще говоря, будет размерность подпространства . Если , а выделено с помощью условий специального вида, то есть основания ожидать, что .



Задача 1.1. (№1297[4]) Доказать, что множество п-мерных векторов, у которых первая и последняя координаты равны между собой, образует линейное подпространство пространства .

Решение. Множество образует линейное подпространство пространства , так как удовлетворяет критерию подпространства. Действительно, выделяется из с помощью одного условия , поэтому

1.



,

2.



.

Кроме того, нетрудно показать, что . Для этого рассмотрим векторы стандартного базиса . Векторы не принадлежат . Но построение базиса подпространства в ряде случаев удобно выполнить, исходя из стандартного базиса самого пространства, изменяя его векторы так, чтобы они «попали» в подпространство. Поэтому преобразуем векторы так, чтобы у них первая и последняя координаты были равны. Например, пусть . Рассмотрим систему векторов . Она образует базис , так как нетрудно проверить, что она является линейно независимой и каждый вектор из подпространства линейно выражается через вектора этой системы. А так как количество векторов системы равно , то и . Итак, наше предположение оказалось верным.

Линейные подпространства, размерности которых на 1 меньше размерности самого пространства называются гиперплоскостями.
В следующей задаче условий больше.

Задача 1.2. (№1298[4]) Доказать, что множество п-мерных векторов, у которых координаты с четными номерами равны нулю, образует линейное подпространство пространства .

Решение. Для доказательства того, что является подпространством, нужно также воспользоваться критерием подпространства. Так как поэтому следует ожидать, что , где - наибольшее четное число, не превышающее (, если - четное, и , если - нечетное). Базисом является подсистема стандартного базиса пространства , содержащая векторы только с нечетными номерами.
Задача 1.3. Проверить, является ли множество многочленов степени 3 с вещественными коэффициентами подпространством пространства многочленов степени ().

Решение. Воспользуемся критерием подпространства. Проверим условие .

Пусть , тогда



,

так как степень суммы этих двух многочленов равна двум. Итак, множество не является подпространством.


Задача 1.4. (№№1291, 1308[4]) Найти какой-нибудь базис и размерность линейного подпространства пространства , если составляют все векторы из , у которых сумма координат .

Решение. Очевидно векторы стандартного базиса

(1 на - ой позиции ) множеству не принадлежат ни при каком . Однако, замена на векторах последнего нуля числом (-1) дает нам векторы из . Таким образом мы получаем систему векторов

из , которая линейно независима (почему?) и обязана быть базисом , ибо из условия задачи явно следует, что из и, следовательно, .

Попутно решен вопрос (и подтвердилась гипотеза) о размерности ( выделено из одним условием).
Задача 1.4. (№1306[4]) Пусть - неотрицательная квадратичная форма от неизвестных ранга . Доказать, что все решения уравнения =0 образуют мерное линейное подпространство пространства .

Поиск решения. Вспоминаем основные понятия теории квадратичных форм (матрица формы, ранг формы, определение формы). Очевидно, что более подробные записи данного уравнения в виде

, никак не указывают на способ решения задачи.

В процессе дальнейших размышлений начинаем понимать, что мы должны исходить из неотрицательной определенности формы . Нормальный вид такой формы



(1)

а множество решений уравнения =0 в этом случае состоит из векторов вида



, (2)

Где - произвольные числа из . Имеющийся опыт (задача 1.2) подсказывает, что множество векторов такого вида есть ()-мерное подпространство пространства . Но данная нам форма не обязательно нормальная. И здесь мы вспоминаем, что каждая неотрицательно определенная форма ранга невырожденным линейным преобразованием приводится к виду (1). Создается план решения: преобразовать форму к виду (1) , найти решения (2) уравнения =0 для преобразованной формы, а затем с помощью обратного преобразования построить решения уравнения =0 для данной формы .



Решение. По теореме о приведении квадратичной формы к нормальному виду существует невырожденное линейное преобразование

, приводящее форму к виду


Множество решений уравнения состоит из векторов где , то есть из векторов

.

Обозначим (1 на - ой позиции) и докажем, что множество решений уравнения =0 есть линейная оболочка системы векторов



.

Пусть . Тогда



Очевидно и другое:



Кроме того, система линейно независима (проверяется непосредственно). Составляем линейную комбинацию . Получаем . Мы пришли к матричному уравнению, которое имеет единственное решение, так как матрица является невырожденной.



.

Отсюда . Тем самым мы показали, что система является линейно независимой. Следовательно, - линейное пространство (по построению) и его размерность




    1. Координаты вектора в данном базисе.

Решение вопроса о ранге системы векторов, заданных координатами в некотором базисе, выделение из системы ее максимальной линейно независимой подсистемы, выражение остальных векторов в виде линейных комбинаций векторов этой подсистемы сводится к решению этих же задач для системы строк (столбцов) координатной матрицы, которые подробно обсуждались в соответствующем параграфе первой части.


1.4.Сумма и пересечение подпространств.
Пусть - данные подпространства пространства. Обычно их задают в виде линейных оболочек систем векторов или как множества решений некоторых однородных систем линейных уравнений, а сами векторы- координатными строками в некотором базисе. Вычисление не составляет особого труда: это ранг объединения базисов или порождающих систем подпространств и . находится по формуле

. (3)

Несколько сложнее обстоит дело с поиском базиса пересечения . В общем виде этот вопрос рассматривается в задаче №1319 [4]. Здесь же мы укажем, как найти решения конкретных задач (№№ 1320-1322 [4]). Задачу 1.6 мы решим двумя способами, второй - с помощью схемы Штифеля (предполагаем, что №1319 вы уже разобрали).


Задача 1.6. Найти базис суммы и пересечения подпространств, натянутых на системы векторов

и

Решение. Обозначим , . Будем считать, что координаты векторов заданы в единичном базисе .

1 способ. Как известно, базисом суммы служит любая база системы векторов , . Его построение сводится к вычислению ранга матрицы, строками которой являются координаты векторов последней системы. Кроме того, базис суммы можно получить, добавляя к базису первого подпространства некоторые из векторов базиса второго подпространства.

Итак, . Базис составляют .



. Базис составляют .

.

Базис составляют . По формуле (3) получаем . Базис пересечения будем искать из условия . Значит, представим в виде и . Приравниваем правые части . Это равенство эквивалентно системе трех линейных однородных уравнений с четырьмя неизвестными. Нужно решить эту систему и построить ФСР. Тогда будет образовывать базис пересечения.



Решив систему, строим ФСР.



Вектор образует базис .



2 способ. 1) Составим таблицу Штифеля для объединенной системы векторов , и перебрасываем наверх сначала векторы , пока это возможно (квадратиками выделены разрешающие элементы). Векторы , переходящие налево, не пишем и их координаты не вычисляем.



а)










б)












2



0






-3

2

3






1

2

3






-1

-2








-5

-2

1





-1

1

2





1

1

2






-7

3

0






-1

3

0



2

0

3






2

0

3



















в)









0

8

3





5

2



-7

3

0



5

6

3

Перебросить наверх вместо невозможно. Следовательно, =2, а базис составляют , . Исключаем из таблицы строку и перебрасываем наверх вместо оставшихся .



г)









-7

38





5

-19

-7

Из таблицы г) получаем: , то есть и базис суммы образуют векторы , , .

2) Продолжаем работу с таблицей г), перебрасывая наверх вместо находящихся наверху , пока это возможно. Как и выше, векторы, уходящие налево, опускаем.


д)









119

0

-7

Вектор перебросить наверх вместо невозможно. Приходим к выводу, что , базис составляют , . По (3) .

3) Возвращаемся к таблице г). Вектор , вошедший в базис , представим через базис суммы в виде:

Отсюда находим .

Вектор и , а так как , то образует базис пересечения . Оба представления вектора дают один результат , что подтверждает правильность вычислений. Задача решена.
Для более полного усвоения понятия суммы, прямой суммы подпространств полезно решить задачи №№1323-1329 [4].

Задача 1.7. Для подпространства , натянутого на векторы , найти дополнительное подпространство.

Решение. Для любого подпространства линейного пространства всегда найдется дополнительное подпространство , то есть такое подпространство, что . Причем, оно определяется неоднозначно. Найдем одно из таких подпространств. Для этого мы должны найти базис подпространства и дополнить его до базиса всего пространства . Пусть - базис . Тогда .

Найдем базис и размерность .



.

Базис - . Так как - сумма прямая, то . Чтобы найти базис дополним базис до базиса всего пространства векторами , .



. Итак, .
2. ЕВКЛИДОВЫ И УНИТАРНЫЕ ПРОСТРАНСТВА.
Основные типы задач этого параграфа:

  • проверка выполнения аксиом скалярного произведения и доказательство его различных свойств (№№1351-1354, 1384);

  • ортогонализация данной системы векторов, построение ортогональных и ортонормированных базисов (№№1355-1363);

  • построение ортогональных дополнений данных подпространств (№№1364-1368);

  • нахождение ортогональных проекций и перпендикуляров на подпространство (№№1369-1372);

  • вычисление длин, расстояний, углов (№№1373-1406).




    1. Процесс ортогонализации Шмидта.

Обычно метод ортогонализации Шмидта рассматривают и обосновывают в лекциях. Тем не менее, подчеркнем, что данная система векторов и ортогональная, т.е. полученная из данной методом Шмидта , являются эквивалентными системами - их линейные оболочки совпадают. Поэтому ортогонализация системы векторов, порождающей подпространство , приводит к построению ортогонального базиса . Обратим внимание на некоторые частные случаи, встречающиеся в задачах:



  1. если подлежащая ортогонализации система распадается на две взаимно ортогональные подсистемы и , то для решения задачи достаточно ортогонализировать каждую из этих подсистем независимо от другой;

  2. если выяснилось, что подсистема уже ортогональна, то ортогонализацию начинаем с вектора , полагая

и дальше по стандартной схеме;



  1. если в процессе ортогонализации, полученная система векторов содержит нулевой вектор, то можно сразу сказать, что исходная система является линейно зависимой.


Задача 2.1. Применить процесс ортогонализации к следующей системе векторов из : , .

Решение. Можно сразу заметить, что система распадается на две взаимно ортогональные подсистемы и . Поэтому ортогонализируем каждую из подсистем независимо друг от друга.

, ,

, .

, .
,

.
2.2.Ортогональные дополнения.
Задачи этого раздела не вызовут трудностей, если разобраться в свойствах решений линейной однородной системы как векторов евклидова (унитарного) пространства.

Рассмотрим пространство и систему линейных однородных уравнений над :



(4)

Обозначив и , перепишем систему (4) в виде



(5)
Пусть . Тогда уравнения (5) означают, что и, следовательно, , а каждый вектор из является решением системы (4). Итак, множество решений системы (4) и линейная оболочка ее строк коэффициентов являются ортогональными дополнениями друг для друга в пространстве . (Какие изменения надо внести в рассуждения в случае пространства ?)

Задача 2.2. Найти базис ортогонального дополнения подпространства , натянутого на векторы:

.

Найти уравнения, задающие подпространство .



Решение. Так как , то состоит из множества решений системы уравнений

Находим фундаментальную систему ее решений (ранг системы 2)



.

Следовательно, , а система уравнений со строками коэффициентов и



задает подпространство , как множество решений этой системы (убедитесь: системы векторов и , взаимно ортогональны, а объединение их базисов есть базис ).


Аналогичные соображения используются при дополнении ортогональной системы до ортогонального базиса.


    1. Ортогональная проекция и перпендикуляр на подпространство.

Известно, что



,

и потому каждый вектор единственным способом представим в виде суммы



где Вектор называют (ортогональной) проекцией вектора на подпространство и обозначают , а - перпендикуляром (ортогональной составляющей) из вектора на подпространство : . Очевидно, что



, . (6)

Если , то



(7)

и тогда


.

Умножаем последнее равенство скалярно на , , с учетом , получаем



(8)

Эта система в силу существования представления (7) совместна. Определитель матрицы этой системы есть определитель Грама . Если - линейно независима, то и система (8) имеет единственное решение. В противном случае у системы (8) решений бесконечно много. Но нам достаточно найти одно (все другие решения дадут нам те же векторы и ). Если система (8) получилась несовместной, ищите ошибку. Вычисления сокращаются, если известны базисы и и если, опираясь на соотношения (6), выбрать то подпространство, размерность которого меньше.


Умение находить и позволит успешно справиться с большинством задач на вычисление длин, расстояний и углов.

Задача 2.3. Вычислить расстояние от вектора до плоскости , заданной системой уравнений

.
следующая страница >>