Теоретические вопросы - umotnas.ru o_O
Главная
Поиск по ключевым словам:
страница 1
Похожие работы
Название работы Кол-во страниц Размер
1 Теоретические основы учета и анализа товарных операций в организации 1 43.25kb.
Ковалева А. И., Луков В. А. Социология молодежи: Теоретические вопросы 1 64.26kb.
Вопросы по курсу "Теоретические основы теплотехники" 1 52.67kb.
Теоретические вопросы 1 40.89kb.
§ теоретические вопросы скалярное поле. Производная по направлению 1 46.06kb.
Вопросы к экзамену (зачету) по курсу «Психология творчества» 1 105.88kb.
Теоретические вопросы из билетов к зачету (I семестр): 1 22.31kb.
Теоретические вопросы Понятие первообразной функции. Теорема о первообразных 2 341.18kb.
Теоретические вопросы по математическому анализу (часть II) 1 34.4kb.
С. В. Маланов метологические и теоретические основы психологии. 9 5134.8kb.
Лабораторная работа Лабораторная работа Основы теории множеств 7 1675.01kb.
Основные сведения из теории математического поля Векторное поле 1 21.45kb.
Викторина для любознательных: «Занимательная биология» 1 9.92kb.

Теоретические вопросы - страница №1/1

VIII. ВЕКТОРНЫЙ АНАЛИЗ

Теоретические вопросы


1. Скалярное поле. Производная по направлению.

2. Градиент, его свойства. Инвариантное определение градиента.

3. Векторное поле. Поток векторного поля через поверхность, его физический смысл.

4. Формула Остроградского.

5. Дивергенция векторного поля, ее физический смысл. Инвариантное определение дивергенции. Свойства дивергенции.

6. Соленоидальное поле, его основные свойства.

7. Линейный интеграл в векторном поле, его свойства и физический смысл.

8. Циркуляция векторного поля, ее гидродинамический смысл.

9. Формула Стокса.

10. Ротор векторного поля, его свойства. Инвариантное определение ротора.

11. Условия независимости линейного интеграла от формы пути интегрирования.

12. Потенциальное поле. Условия потенциальности.


Теоретические упражнения


1. Найти производную скалярного поля по направлению градиента скалярного поля .

2. Найти градиент скалярного поля , где — постоянный вектор, а — радиус-вектор. Каковы поверхности уровня этого поля и как они расположены по отношению к вектору ?

3. Доказать, что если — замкнутая кусочно-гладкая поверхность и — ненулевой постоянный вектор, то

где — вектор, нормальный к поверхности .

4. Доказать формулу

где ; — поверхность, ограничивающая объем ; — орт внешней нормали к поверхности . Установить условия применимости формулы.

5. Доказать, что если функция удовлетворяет уравнению Лапласа

то

где — производная по направлению нормали к кусочно-гладкой замкнутой поверхности .

6. Доказать, что если функция является многочленом второй степени и — кусочно-гладкая замкнутая поверхность, то интеграл

пропорционален объему, ограниченному поверхностью .

7. Пусть , где — линейные функции от и пусть — замкнутая кусочно-гладкая кривая, расположенная в некоторой плоскости Доказать, что если циркуляция отлична от нуля, то она пропорциональна площади

фигуры, ограниченной контуром .

8. Твердое тело вращается с постоянной угловой скоростью вокруг неподвижной оси, проходящей через начало координат. Вектор угловой скорости . Определить ротор и дивергенцию поля линейных скоростей точек тела (здесь — радиус-вектор).

Расчетные задания


Задача 1. Найти производную скалярного поля в точке по направлению нормали к поверхности , образующей острый угол с положительным направлением оси .

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

1.11.

1.12.

1.13.

1.14.

Найти производную скалярного поля в точке по направлению вектора .

1.15. 1.16.

1.17. 1.18.

1.19. 1.20.

1.21. 1.22.

1.23. 1.24.

1.25. 1.26.

1.27. 1.28.

1.29. 1.30.

1.31.

Задача 2. Найти угол между градиентами скалярных полей и в точке .

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

2.17.

2.18.

2.19.

2.20.

2.21.

2.22.

2.23.

2.24.

2.25.

2.26.

2.27.

2.28.

2.29.

2.30.

2.31.


Задача 3. Найти векторные линии в векторном поле .

3.1. 3.2.

3.3. 3.4.

3.5. 3.6.

3.7. 3.8.

3.9. 3.10.

3.11. 3.12.

3.13. 3.14.

3.15. 3.16.

3.17. 3.18.

3.19. 3.20.

3.21. 3.22.

3.23. 3.24.

3.25. 3.26.

3.27. 3.28.

3.29. 3.30.

3.31.
Задача 4. Найти поток векторного поля через часть поверхности , вырезаемую плоскостями (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).

4.1. 4.2.

4.3. 4.4.

4.5. 4.6.

4.7. 4.8.

4.9. 4.10.

Найти поток векторного поля через часть поверхности , вырезаемую плоскостью (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

4.20.

4.21.

4.22.

4.23.

4.24.

4.25.

4.26.

4.27.

4.28.

4.29.

4.30.

4.31.


Задача 5. Найти поток векторного поля через часть плоскости , расположенную в первом октанте (нормаль образует острый угол с осью ).

5.1. 5.2.

5.3. 5.4.

5.5. 5.6.

5.7. 5.8.

5.9. 5.10.

5.11. 5.12.

5.13. 5.14.

5.15. 5.16.

5.17. 5.18.

5.19. 5.20.

5.21. 5.22.

5.23. 5.24.

5.25. 5.26.

5.27. 5.28.

5.29. 5.30.

5.31.
Задача 6. Найти поток векторного поля через часть плоскости , расположенную в 1 октанте (нормаль образует острый угол с осью ).

6.1. 6.2.

6.3. 6.4.

6.5. 6.6.

6.7. 6.8.

6.9. 6.10.

6.11. 6.12.

6.13.

6.14.

6.15. 6.16.

6.17.

6.18.

6.19.

6.20.

6.21. 6.22.

6.23.

6.24. 6.25.

6.26.

6.27.

6.28.

6.29.

6.30.

6.31.
Задача 7. Найти поток векторного поля через замкнутую поверхность (нормаль внешняя).

7.1.

7.2.

7.3.

7.4.

7.5.

7.6.

7.7.

7.8.

7.9.

7.10.

7.11.

7.12.

7.13.

7.14.

7.15.

7.16.

7.17.

7.18.

7.19.

7.20.

7.21.

7.22.

7.23.

7.24.

7.25.

7.26.

7.27.

7.28.

7.29.

7.30.

7.31.



Задача 8. Найти поток векторного поля через замкнутую поверхность (нормаль внешняя).

8.1. 8.2.

8.3. 8.4.

8.5. 8.6.

8.7. 8.8.

8.9. 8.10.

8.11. 8.12.

8.13. 8.14.

8.15. 8.16.

8.17. 8.18.

8.19.

8.20.

8.21. 8.22.

8.23. 8.24.

8.25.

8.26.

8.27.

8.28.

8.29.

8.30.

8.31.
Задача 9. Найти поток векторного поля через замкнутую поверхность (нормаль внешняя).

9.1.

9.2.

9.3. 9.4.

9.5. 9.6.

9.7. 9.8.

9.9.

9.10.

9.11. 9.12.

9.13.

9.14.

9.15. 9.16.

9.17. 9.18.

9.19. 9.20.

9.21.

9.22.

9.23. 9.24.

9.25.

9.26.

9.27. 9.28.

9.29. 9.30.

9.31.


Задача 10. Найти работу силы при перемещении вдоль линии от точки к точке .

10.1. 10.2.

10.3. 10.4.

10.5. 10.6.

10.7. 10.8.

10.9. 10.10.

10.11. 10.12.

10.13. 10.14.

10.15.

10.16.

10.17.

10.18.

10.19. 10.20.

10.21. 10.22.

10.23. 10.24.

10.25. 10.26.

10.27. 10.28.

10.29. 10.30.

10.31.
Задача 11. Найти циркуляцию векторного поля вдоль контура (в направлении, соответствующем возрастанию параметра ).

11.1. 11.2.

11.3. 11.4.

11.5. 11.6.

11.7. 11.8.

11.9. 11.10.

11.11. 11.12.

11.13. 11.14.

11.15. 11.16.

11.17. 11.18.

11.19. 11.20.

11.21. 11.22.

11.23. 11.24.

11.25. 11.26.

11.27. 11.28.

11.29. 11.30.

11.31.
Задача 12. Найти модуль циркуляции векторного поля вдоль контура .

12.1. 12.2.

12.3. 12.4.

12.5. 12.6.

12.7. 12.8.

12.9. 12.10.

12.11. 12.12.

12.13. 12.14.

12.15. 12.16.

12.17. 12.18.

12.19. 12.20.

12.21. 12.22.

12.23. 12.24.

12.25. 12.26.

12.27. 12.28.

12.29. 12.30.



12.31.