Рабочая программа по математике для 11 класса учителя математики высшей квалификационной категории Затонской средней общеобразовател - umotnas.ru o_O
Главная
Поиск по ключевым словам:
Похожие работы
Название работы Кол-во страниц Размер
Рабочая программа по изучению курса математики в 6 классе 3 699.61kb.
Программа для 5-11 классов татарской средней общеобразовательной... 1 401.37kb.
Программа по математике для 6 класса для основной общеобразовательной... 1 669.7kb.
Технологическая карта дисциплины Кафедра: математики Направление... 1 99.17kb.
Трофимова Елена Владимировна, учитель Баскаковской мсош гагаринского... 1 318.74kb.
Публичный отчёт директора моу зональной средней общеобразовательной... 4 821.76kb.
Разработка урока литературы в 10 классе. Учитель русского языка и... 1 77.9kb.
Для «Русско-татарской средней общеобразовательной школы №129» 1 36.87kb.
Учебник для учащихся 7 класса общеобразовательной школы Хрестоматия... 2 336.11kb.
Цель дисциплины " геометрия " 1 98.97kb.
Смирновой Елены Леонидовны учителя информатики высшей категории г. 1 330.79kb.
Реферат по специальности 05020152 преподавание математики в основной... 1 164.01kb.
Викторина для любознательных: «Занимательная биология» 1 9.92kb.

Рабочая программа по математике для 11 класса учителя математики высшей квалификационной - страница №1/3

«Согласовано» «Согласовано» «Согласовано»

Руководитель МО Заместитель руководителя Руководитель МОУ

Даминова Ф. Н /_____________/ по УВР МОУ Сорокин А. И. /______________/

ФИО Зиганшина В. С. /_____________/ ФИО

Протокол № ______ от ФИО Приказ от « » ___________2012 г.

« » _____________2012 год. « »_______________2012 год.

Рабочая программа по математике для 11 класса

учителя математики высшей квалификационной категории

Затонской средней общеобразовательной школы

Камско – Устьинского муниципального района

Даминовой Фирдавсы Нурулловны

на 2012 – 2013 учебный год.

Статус документа

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта среднего (полного) общего образования.

Данная рабочая программа ориентирована на учащихся 11 классов и реализуется на основе следующих документов:


  1. Т.Б. Васильева, И.Н. Иванова. Примерная программа среднего (полного) общего образования по математике. Сборник нормативно-правовых документов и методических материалов. – М.: Вентана-Граф, 2007.

  2. Государственный стандарт начального общего, основного общего и среднего (полного) общего образования. Приказ Министерства образования РФ от 05.03.2004 г № 1089.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.
Рабочая программа выполняет две основные функции:

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.
Алгебра и начала математического анализа
Место предмета в федеральном базисном учебном плане
Согласно федеральному профильному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени среднего (полного) общего образования отводится 6 ч в неделю 11 классах. Из них на алгебру и начала анализа в 11 классе отводится по 4 часа в неделю или 140 часов. Рабочая программа рассчитана на 210 учебных часов (на алгебру и начала математического анализа и геометрию).

В настоящей рабочей программе указано соотношение часов на изучение тем (подробнее расписано в Содержании тем учебного курса).


Задачи учебного предмета


При изучении курса математики на профильном уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:

  1. систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;

  2. расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

  3. развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;

  4. знакомство с основными идеями и методами математического анализа.

Цели


Изучение математики на профильном уровне среднего (полного) общего образования направлено на достижение следующих целей:

  1. формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  2. развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;

  3. овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  4. воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.
Общеучебные умения, навыки и способы деятельности

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

  1. построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

  2. выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

  3. самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

  4. проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

  5. самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.

Основное содержание



Алгебра (30 часов)

Корни и степени. Корень степени n>1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем1. Свойства степени с действительным показателем.

Логарифм. Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е.

Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования.
Основы тригонометрии. Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Преобразования простейших тригонометрических выражений.

Простейшие тригонометрические уравнения. Решения тригонометрических уравнений. Простейшие тригонометрические неравенства. Арксинус, арккосинус, арктангенс числа.



ФУНКЦИИ (35 час)

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.

Обратная функция. Область определения и область значений обратной функции. График обратной функции.

Степенная функция с натуральным показателем, ее свойства и график.



Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций.

Тригонометрические функции, их свойства и графики; периодичность, основной период.

Показательная функция (экспонента), ее свойства и график.

Логарифмическая функция, ее свойства и график.

Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.

НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА (20 час)
Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма. Понятие о непрерывности функции. Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции данной функции с линейной. Понятие об определенном интеграле как площади криволинейной трапеции. Первообразная. Формула Ньютона-Лейбница. Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.

УРАВНЕНИЯ И НЕРАВЕНСТВА(40 часов)

Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных уравнений. Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной. Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем. Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.



Элементы комбинаторики, статистики и теории вероятностей (25 часов)

Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний. Размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биноминальных коэффициентов. Треугольник Паскаля. Элементарные и сложные события. Рассмотрение случаев и вероятность суммы нескольких событий, вероятность противоположного события. Понятие о независимости событий. Вероятность статистическая частота наступления события. Решение задач с применением вероятностных методов. От азартных игр к теории вероятностей. Ферма и Паскаль.



Цели

  1. Пробудить способность к саморазвитию, самореализации учащихся в процессе обучения,

  2. Развивать математические, интеллектуальные способности учащихся, логическое мышление, вычислительные навыки, интерес к предмету,

  3. Воспитывать культуру общения.



Задачи


  1. Изучить свойства тригонометрических функций, производную.

  2. Научить решать тригонометрические уравнения и неравенства, строить графики тригонометрических функций, применять производную к исследованию функции.

  3. Приобщать к работе с математической литературой, компьютером

  4. Предоставить учащимся возможность проанализировать свои способности к математической деятельности.

  5. Готовить учащихся к сдаче единого государственного экзамена.





СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

Алгебра и начала математического анализа 11 класс

(4 часа в неделю или 140 часов)


Повторение (5 часов)

Цели: повторить и обобщить основные знания правил вычисления производных и навыки нахождения производных тригонометрических функций, сложных функций; повторить геометрический, физический смысл производной функции, применение производной к исследованию функций.

Первообразная (10 часов)

Цели: познакомить учащихся с интегрированием как операцией, обратной дифференцированию; научить использовать свойства и правила при нахождении первообразных различных функций

Формирование представлений о понятии первообразной.

Овладение умением применения первообразной функции при решении задачи вычисления площадей криволинейных трапеций и других плоских фигур.

Интеграл (12 часов)

Цели: научить учащихся применять первообразную для вычисления площадей криволинейных трапеций (формула Ньютона-Лейбница)

Формирование представлений о понятии неопределенного интеграла, определенного интеграла.

Овладение умением применения первообразной функции при решении задачи вычисления площадей криволинейных трапеций и других плоских фигур.

Обобщение понятия степени (12 часов)

Цели: познакомить учащихся с понятия корня n-й степени и степени с рациональным показателем, которые являются обобщением понятий квадратного корня и степени с целым показателем. Следует обратить внимание учащихся на то, что рассматриваемые здесь свойства корней и степеней с рациональным показателем аналогичны тем свойствам, которыми обладают изученные ранее квадратные корни и степени с целыми показателями. Необходимо уделить достаточно времени отработке свойств степеней и формированию навыков тождественных преобразований.

Формирование представлений корня n-ой степени из действительного числа, функции и графика этой функции.

Овладение умением извлечения корня, построения графика функции и определения свойств функции .

Овладение навыками упрощение выражений, содержащих радикал, применяя свойства корня n-й степени.

Обобщить и систематизировать знания учащихся о степенной функции, о свойствах и графиках степенной функции в зависимости от значений оснований и показателей степени.

Показательная и логарифмическая функция (20 часов)

Цели: познакомить учащихся с показательной, логарифмической и степенной функциями; изучение свойств показательной, логарифмической и степенной функций построить в соответствии с принятой общей схемой исследования функций. При этом обзор свойств давать в зависимости от значений параметров. Показательные и логарифмические уравнения и неравенства решать с опорой на изученные свойства функций.

Формирование представлений о показательной и логарифмической функциях, их графиках и свойствах.

Овладение умением понимать и читать свойства и графики логарифмической функции, решать логарифмические уравнения и неравенства.

Овладение умением понимать и читать свойства и графики показательной функции, решать показательные уравнения и неравенства.

Создание условий для развития умения применять функционально-графические представления для описания и анализа закономерностей, существующих в окружающем мире и в смежных предметах.

Производная показательной и логарифмической функции (15 часов)

Цели: познакомить учащихся с производной показательной и логарифмической функций, сформировать у учащихся навыки вычисления производной показательной и логарифмической функции, через решение различных типов заданий. Вывод формулы производной показательной функции провести на наглядно-интуитивной основе. При рассмотрении вопроса о дифференциальном уравнении показательного роста и показательного убывания показательная функция должна выступать как математическая модель, находящая широкое применение при изучении реальных процессов и явлений действительности.

Элементы комбинаторики, статистики и теории вероятностей (12 часов).

Цели: познакомить учащихся с понятиями: Вероятность и геометрия. Независимые повторения испытаний с двумя исходами. Статистические методы обработки информации. Гауссова кривая. Закон больших чисел.

Уравнения и неравенства. Системы уравнений и неравенств (22 часа).

Цели: познакомить учащихся с понятиями: Равносильность уравнений. Общие методы решения уравнений. Равносильность неравенств. Уравнения и неравенства с модулями. Иррациональные уравнения и неравенства. Уравнения и неравенства с двумя переменными. Системы уравнений. Задачи с параметрами.


Итоговое повторение (31 час)

Цели: повторить и обобщить навыки решения основных типов задач по следующим темам: преобразование тригонометрических, степенных, показательных и логарифмических выражений; тригонометрические функции, функция y=, показательная функция, логарифмическая функция; производная; первообразная; различные виды уравнений и неравенств.

Обобщение и систематизация курса алгебры и начала анализа за 11 класса.

Создание условий для плодотворного участия в работе в группе; умения самостоятельно и мотивированно организовывать свою деятельность.

Формирование представлений об идеях и методах математики, о математике, как средстве моделирования явлений и процессов.

Овладение устным и письменным математическим языком, математическим знаниями и умениями.

Развитее логического и математического мышления, интуиции, творческих способностей.

Воспитание понимания значимости математики для общественного прогресса.
ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ


В результате изучения математики ученик должен

знать/понимать

  1. значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  2. значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  3. универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

  4. вероятностный характер различных процессов окружающего мира.

уметь

  1. выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  2. проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

  3. вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразовании.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства.



Функции и графики

уметь

  1. определять значение функции по значению аргумента при различных способах задания функции;

  2. строить графики изученных функций;

  3. описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

  4. решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.



Начала математического анализа

уметь

  1. вычислять производные и первообразные элементарных функций, используя справочные материалы;

  2. исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

  3. вычислять в простейших случаях площади с использованием первообразной.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.



Уравнения и неравенства

уметь

  1. решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;

  2. составлять уравнения и неравенства по условию задачи;

  3. использовать для приближенного решения уравнений и неравенств графический метод;

  4. изображать на координатной плоскости множества решений простейших уравнений и их систем.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

построения и исследования простейших математических моделей.


ГЕОМЕТРИЯ
Место предмета в федеральном базисном учебном плане

Согласно федеральному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени среднего (полного) общего образования отводится 6 ч в неделю в 11 классе. Из них на геометрию в 11 классе отводится по 2 часа в неделю или 70 часов.

Рабочая программа рассчитана на 210 учебных часов (на алгебру и геометрию).

В настоящей рабочей программе указано соотношение часов на изучение тем (подробнее расписано в Содержании тем учебного курса по геометрии).


Цели:

  • Формировать умение выполнять дополнительные построения, сечения, выбирать метод решения, проанализировать условие задачи;

  • Научить владеть новыми понятиями, переводить аналитическую зависимость в наглядную форму и обратно.


Задачи:

  • Уметь решать задачи на построение сечений, нахождение угла между прямой и плоскостью;

  • Выполнять сложение и вычитание векторов в пространстве;

  • Находить площади поверхности многогранников;

  • Изучить основные свойства плоскости;

  • Рассмотреть взаимное расположение двух прямых, прямой и плоскости;

  • Изучить параллельность прямых и плоскостей, параллельность плоскостей, перпендикулярность прямых и плоскостей.





СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

Геометрия 11 класс

(2 часа в неделю, всего70 часов)


1. Координаты точки и координаты векторов в пространстве. Движения (14 ч).

Прямоугольная система координат в пространстве. Расстояние между точками в пространстве. Векторы в пространстве. Длина вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Координаты вектора. Скалярное произведение векторов.



Цель: введение понятие прямоугольной системы координат в пространстве; знакомство с координатно-векторным методом решения задач.

Цели: сформировать у учащихся умения применять координатный и векторный методы к решению задач на нахождение длин отрезков и углов между прямыми и векторами в пространстве. В ходе изучения темы целесообразно использовать аналогию между рассматриваемыми понятиями на плоскости и в пространстве. Это поможет учащимся более глубоко и осознанно усвоить изучаемый материал, уяснить содержание и место векторного и координатного методов в курсе геометрии

О с н о в н а я ц е л ь – обобщить и систематизировать представления учащихся о декартовых координатах и векторах, познакомить с полярными и сферическими координатами.

Изучение координат и векторов в пространстве, с одной стороны, во многом повторяет изучение соответствующих тем планиметрии, а с другой стороны, дает алгебраический метод решения стереометрических задач.



2.Цилиндр, конус, шар (16 ч)

Основные элементы сферы и шара. Взаимное расположение сферы и плоскости. Многогранники, вписанные в сферу. Многогранники, описанные около сферы. Цилиндр и конус. Фигуры вращения.



Цель: выработка у учащихся систематических сведений об основных видах тел вращения.

Цели: дать учащимся систематические сведения об основных видах тел вращения. Изучение круглых тел (цилиндра, конуса, шара) завершает изучение системы основных пространственных геометрических тел. В ходе знакомства с теоретическим материалом темы значительно развиваются пространственные представления учащихся: круглые тела рассматривать на примере конкретных геометрических тел, изучать взаимное расположение круглых тел и плоскостей (касательные и секущие плоскости), ознакомить с понятиями описанных и вписанных призм и пирамид. Решать большое количество задач, что позволяет продолжить работу по формированию логических и графических умений.

О с н о в н а я ц е л ь – сформировать представления учащихся о круглых телах, изучить случаи их взаимного расположения, научить изображать вписанные и описанные фигуры.

В данной теме обобщаются сведения из планиметрии об окружности и круге, о взаимном расположении прямой и окружности, о вписанных и описанных окружностях. Здесь учащиеся знакомятся с основными фигурами вращения, выясняют их свойства, учатся их изображать и решать задачи на фигуры вращения. Формированию более глубоких представлений учащихся могут служить задачи на комбинации многогранников и фигур вращения.



3. Объемы тел и площадь поверхности (22 ч).

Понятие объема и его свойства. Объем цилиндра, прямоугольного параллелепипеда и призмы. Принцип Кавальери. Объем пирамиды. Объем конуса и усеченного конуса. Объем шара и его частей. Площадь поверхности многогранника, цилиндра, конуса, усеченного конуса. Площадь поверхности шара и его частей.



Цель: систематизация изучения многогранников и тел вращения в ходе решения задач на вычисление их объемов.

Цели: продолжить систематическое изучение многогранников и тел вращения в ходе решения задач на вычисление их объемов.

Понятие объема вводить по аналогии с понятием площади плоской фигуры и формулировать основные свойства объемов.

Существование и единственность объема тела в школьном курсе математики приходится принимать без доказательства,

так как вопрос об объемах принадлежит, по существу, к трудным разделам высшей математики. Поэтому нужные результаты устанавливать, руководствуясь больше наглядными соображениями. Учебный материал главы в основном должен усвоиться в процессе решения задач.



О с н о в н а я ц е л ь – сформировать представления учащихся о понятиях объема и площади поверхности, вывести формулы объемов и площадей поверхностей основных пространственных фигур, научить решать задачи на нахождение объемов и площадей поверхностей.

Изучение объемов обобщает и систематизирует материал планиметрии о площадях плоских фигур. При выводе формул объемов используется принцип Кавальери. Это позволяет чисто геометрическими методами, без использования интеграла или предельного перехода, найти объемы основных пространственных фигур, включая объем шара и его частей.



Практическая направленность этой темы определяется большим количеством разнообразных задач на вычисление объемов и площадей поверхностей.

Повторение (19 ч.)

Цель: повторение и систематизация материала 11 класса.

Цели: повторить и обобщить знания и умения, учащихся через решение задач по следующим темам: метод координат в пространстве; многогранники; тела вращения; объёмы многогранников и тел вращения.
следующая страница >>