Программный комплекс для анализа данных трековых детекторов методами распознавания образов и его применение в физике высоких энергий - umotnas.ru o_O
Главная
Поиск по ключевым словам:
страница 1страница 2
Похожие работы
Программный комплекс для анализа данных трековых детекторов методами распознавания - страница №1/2

Учреждение Российской академии наук

ФИЗИЧЕСКИЙ ИНСТИТУТ им. П.Н.ЛЕБЕДЕВА РАН


На правах рукописи

УДК 539.1.07, 524.1, 539.1.05

Старков Николай Иванович

Программный комплекс для анализа данных трековых детекторов методами распознавания образов и его применение в физике высоких энергий, элементарных частиц и космических лучей

Специальность 01.04.01 – приборы и методы экспериментальной физики

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора физико-математических наук

Москва 2010




Работа выполнена в Учреждении Российской академии наук Физическом институте им. П.Н. Лебедева РАН.



О
Доктор физико-математических наук,

профессор Улин С.Е., Московский инженерно-физический институт (Государственный университет)


Доктор физико-математических наук,

профессор Галкин В.И., Научно-исследовательский институт ядерной физики им. Скобельцина МГУ


Доктор физико-математических наук, Мухамедшин Р.А., Институт ядерных исследований РАН

фициальные оппоненты:


В
Объединённый Институт ядерных исследований,

г. Дубна.


едущая организация:

Защита состоится __27___ сентября 2010 года в __12___ часов

на заседании специализированного ученого совета Д 002.023.02 Физического института имени П.Н.Лебедева РАН

по адресу: 119991 Москва, Ленинский проспект, 53.


С диссертацией можно ознакомиться в библиотеке ФИАН.

Автореферат диссертации разослан _____ мая 2010 года.









ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы.

В данной работе представлен программный комплекс для анализа данных методом распознавания образов (МРО) и результаты его применения при обработке экспериментальных материалов, полученных с использованием твёрдотельных трековых детекторов (ТТД) и для определения характеристик релятивистских заряженных частиц в детекторах черенковского излучения (Ring Imaging Cherenkov detector - RICH-детекторы).

Актуальность данной работы обусловлена важностью проблемы автоматизации обработки данных экспериментов с трековыми детекторами. Трековые детекторы широко используются в экспериментах по физике частиц на протяжении уже многих десятилетий, что связано с их уникальным пространственным разрешением и возможностью разделения треков частиц. Так, например, ни один из применяемых сейчас детекторов элементарных частиц не может обеспечить пространственное разрешение, которое дает ядерная эмульсия: при размере зерна 0.3 – 1 мкм, отклонение зерен от восстановленной траектории движения частицы в среднем не превышает 0.8 мкм, а при определенных условиях может быть уменьшено до 0.2 мкм. Таким образом, трековые детекторы имеют ряд преимуществ перед многими другими системами детектирования. Метод трековых детекторов непрерывно развивается, совершенствуется его методика и в настоящее время он используется в физике высоких энергий, в физике космических лучей, реакторной физике, металлургии, геологии, археологии, медицине, биологии, исследованиях метеоритов и образцов лунных пород.

Одним из недостатков ТТД является то, что просмотр больших площадей детекторов, как правило, с большим увеличением представляет собой достаточно сложную техническую проблему. Обработка данных трековых детекторов, проводившаяся оператором на оптических микроскопах вручную, требовала огромных затрат труда и времени.

В последние годы этот недостаток в значительной мере был преодолен благодаря прогрессу, который достигнут в производстве прецизионной техники, и созданию оптических столов с высокой точностью перемещения по командам от компьютеров, широкому применению современных приборов с зарядовой связью (CCD-камеры) для регистрации и оцифровывания оптических изображений и вычислительным возможностям современных компьютеров. Благодаря применению этих достижений прецизионной механики, возможностям средств вычислительной техники и разработке необходимого программного математического обеспечения стала реальностью полная автоматизация труда микроскопистов. При измерениях в таком автоматическом режиме оцифрованные изображения следов заряженных частиц и ядер в трековых детекторах, полученные при помощи CCD-камер, вводятся в компьютеры, математическое обеспечение которых позволяет производить поиск, распознавание и изучение треков, восстанавливать их пространственное положение. Такие автоматизированные системы уже существуют во многих странах, в частности, в Японии, Италии, Швейцарии (эксперименты CHORUS, OPERA, DONUT).

С 2000 года успешно работает, созданный в ФИАН'е комплекс ПАВИКОМ – Полностью АВтоматизированный Измерительный КОМплекс, в состав которого входят два микроскопа. Изначально комплекс создавался для обработки данных эксперимента EMU-15, в котором эмульсионная камера, включающая свинцовую мишень толщиной 0,4 мм и 38 слоёв фотоэмульсии, облучалась пучком ядер свинца с энергией 158 ГэВ/нуклон.

Универсальность и широкие возможности использованного при создании комплекса оборудования позволили значительно расширить круг решаемых экспериментальных задач. т.е. была реализована возможность обработки разных по своей природе ТТД: фотоэмульсий, пластиков и других твердотельных трековых детекторов. К настоящему времени ПАВИКОМ успешно использовался для анализа данных 9 экспериментов с ТТД. Такая широта охвата различных направлений исследований на ПАВИКОМ требует постоянной доработки программного обеспечения и делает невозможным использование одного программного пакета для всех задач. Основная причина такого подхода связана с тем, что не существует универсальных алгоритмов, применимых для одновременной обработки всех типов изображений, в том числе снимков следов частиц в ТТД различной природы. Это обусловлено большим разнообразием геометрических форм и комбинаций фигур, образуемых следами элементарных частиц в разных материалах, через которые они проходят. В то же время представляется нерациональным создавать множество узкоспециализированных программ по обработке материала каждого отдельного эксперимента.

Именно поэтому была поставлена задача разработки гибкой системы по автоматизированной обработке данных широкого спектра экспериментов с использованием трековых детекторов. Такая система была разработана и реализована автором в виде программного комплекса (ПК) блочно-модульного типа на основе применения метода распознавания образов.


Цели и задачи работы. Целью данной работы было создание универсального ПК для анализа данных трековых детекторов методом распознавания образов и его применение в физике высоких энергий, элементарных частиц и космических лучей. Разработанный ПК успешно используется на многоцелевой установке ПАВИКОМ для автоматизированной обработки данных разнообразных эмульсионных и твёрдотельных детекторов, что фактически сделало установку ПАВИКОМ уникальной.

К настоящему времени на ПАВИКОМ успешно обрабатываются данные, полученные в 9 экспериментах. Каждый из этих экспериментов нацелен на получение важных физических сведений о характеристиках взаимодействий элементарных частиц и ядер при релятивистских энергиях. Объем данных, требующих просмотра и анализа, составлял десятки тысяч изображений. Достигнутая высокая эффективность работы комплекса ПАВИКОМ стала возможной исключительно благодаря автоматизации обработки больших массивов информации.

Таким образом основным результатом данной работы является разработка, создание и применение ПК, позволяющего достаточно просто компоновать специализированные пользовательские программы, способные в автоматическом режиме обрабатывать изображения следов частиц в разных типах ТТД. Результаты, полученные при анализе данных конкретных экспериментов, продемонстрировали высокую эффективность его работы.

В рамках данного ПК, кроме того, была реализована распознающая система, основанная на применении искусственных нейронных сетей. Результаты по обработке изображений RICH-детектора показали её преимущество при определении характеристик космических частиц высоких энергий по сравнению с обычными методами обработки.


Достоверность полученных результатов обусловлена применением современных методов программирования, основанных на объектно-ориентированном подходе к построению программ, и использовании основных принципов и алгоритмов методов распознавания образов, а также современных математических методов обработки результатов. Достоверность также подтверждена соответствием полученных результатов и независимых измерений.
Научная новизна. Разнообразие геометрических форм и комбинаций фигур, образуемых следами частиц в трековых детекторах, приводит к невозможности обработки их изображений с помощью одной программы. Чтобы преодолеть эту трудность и в то же время автоматизировать обработку такого разнообразного набора объектов наиболее оптимальным образом, соответствующее программное обеспечение было реализовано в виде ПК, состоящего из отдельных функциональных блоков. Каждый из этих блоков отвечает за определённый вид обработки и соответствует одному из её этапов. Пользовательский вариант программы собирается из этих блоков в зависимости от характеристик, требуемых от неё, и дополняется программными элементами, связывающими отдельные блоки в единую программу.

Другим важным свойством ПК является его возможность обрабатывать в автоматическом режиме большие массивы изображений (до нескольких тысяч) в одном сеансе. Однако при обработке таких массивов очень часто приходится иметь дело с изображениями очень разными по своим характеристикам. Например, следы треков в толстослойных эмульсиях сильно меняются в зависимости от того, как близко от поверхности плёнки они расположены. Это связано с неравномерностью проявки эмульсии по толщине. Такая ситуация потребовала выработки специальных алгоритмов обработки изображений, которые в зависимости от качества конкретного изображения автоматически настраивают программу на условия, являющиеся оптимальными в данной ситуации.

В ходе работы над рассматриваемым ПК были также разработаны другие оригинальные алгоритмы, в частности, позволяющие проводить классификацию треков, в зависимости от особенностей геометрических и других характеристик следов частиц в материале. При появлении треков с новыми характеристиками созданная система может быть дополнена соответствующими алгоритмами и таким образом носит открытый характер и допускает расширение и развитие применительно к новым задачам и условиям обработки.

Особенности изображений детекторов некоторых экспериментов потребовали создания специальных блоков, использующих более сложные подходы: нейронные сети и метод нечётких множеств.


Научное и практическое значение работы определяется актуальностью задачи по обработке данных в физике высоких энергий, элементарных частиц и космических лучей. Особенностью разработанного ПК является возможность создавать программные пакеты на основе функциональных модулей, каждый из которых может воспроизводить определённые этапы обработки изображений и анализа треков с учётом особенностей конкретной задачи.
Внедрение результатов работы заключалось в создании пользовательских программ, построенных на основе блоков ПК, для автоматизированной обработки результатов измерений конкретных экспериментов. На основе работы этих программ получены следующие результаты:

  • проведён анализ треков космических частиц в оливинах из метеоритов и получены зарядовые распределения тяжёлых и сверхтяжёлых ядер в оливине;

  • исследована структура нейтроноизбыточного ядра 6Не и подтверждено существование динейтронной конфигурации в нём и её важная роль в процессах рассеяния;

  • таблицы ядерных уровней ядра 161Ho дополнены новыми, ранее неизвестными линиями;

  • разработана и апробирована методика измерения зарядов в толстослойных фотоэмульсиях;

  • создана программа по измерению потоков нейтронов в эксперименте "Энергия плюс трансмутация". Использование метода нечётких множеств позволило проводить измерения в условиях больших загрузок;

  • создана программа с использованием нейронных сетей для анализа изображений RICH-детектора. Показано преимущество данного подхода по сравнению с обычными методами.

Важным достоинством данного ПК является также то, что он не "привязан" жёстко к установке ПАВИКОМ и при необходимости может быть использован при обработке данных на других установках или просто для выделения на изображениях объектов, имеющих характерные признаки.


Личный вклад автора в проведённое исследование.

Автором был создан универсальный, блочно-модульного типа ПК для ПАВИКОМ. При этом автор разработал общую структуру ПК и системный подход к разбиению его на блоки, были созданы наборы классов для описания отдельных элементов структуры, пользовательские программы и получены результаты при обработке данных экспериментов по физике элементарных частиц и космических лучей.


Основные положения и результаты, выносимые на защиту.
I. Программный комплекс (ПК) блочно-модульного типа, созданный по принципу объектно-ориентированных систем для обработки изображений на основе метода распознавания образа, имеющий следующую структуру:

  1. Блок, включающий операции с графическими файлами различных форматов и с видеопамятью компьютера для работы с автоматизированным микроскопом.

  2. Блок обработки изображений, включающий следующие разделы.

  • Алгоритмы линейных преобразований изображений (градиентные, Лапласа, сглаживающие и т.д.).

  • Алгоритмы нелинейных преобразований изображений (медианные фильтры, повышение контраста и яркости, логические операции и т.д.).

  • Операции с гистограммой почернений (аппроксимация пиков несколькими функциями Гаусса, алгоритмы поиска порога отсечения фона, автоматизированная оценка качества изображений).

  • Операции по выделению кластеров треков и элементов треков частиц как самостоятельных объектов. Комплект классов для хранения информации о кластерах и их наборах.

  • Процедуры определения характеристик кластеров.

  1. Блок операций по поиску треков, вершин взаимодействия и их характеристик для экспериментальных задач по физике высоких энергий, элементарных частиц и космических лучей. Комплект классов для хранения информации о треках.

  2. Блок математических операций, содержащий:

  • Комплект классов элементарных геометрических объектов в двух- и трёх мерном пространстве - точки, прямые линии и операции с ними.

  • Алгоритм минимизации функционала на основе алгоритма Нелдера-Мида и набор классов для аппроксимации точек методом наименьших квадратов (аппроксимация наборов точек функциями Гаусса и Ландау, аппроксимация набора точек прямыми на плоскости и в пространстве с учётом возможных выбросов, аппроксимация произвольными функциями и т.д.).

  1. Блок визуализации. Графическое представление результатов работы ПК в виде последовательности точек, кривых, гистограмм и поверхностей.

  2. Блок нейронной сети Хопфилда с обратным распространением ошибки (обучение и рабочий режим).

II. Программы пользовательского типа, разработанные на основе ПК, и результаты их применения для обработки экспериментальных данных фотоэмульсионных экспериментов:



    • Исследование структуры нейтроноизбыточных ядер.

    • Измерения зарядов релятивистских ядер в толстослойных эмульсиях.

    • Изучение структуры уровней возбуждения ядер на основе анализа спектра электронов внутренней конверсии.

III. Результаты исследования характеристик частиц в твёрдотельных детекторах:



  • потоки нейтронов в эксперименте "Энергия плюс трансмутация" в условиях малой и большой загрузок с использованием теории нечётких множеств.

  • Зарядовый состав тяжёлых и сверхтяжёлых ядер космических лучей в оливинах из метеоритов.

IV. Программа, реализующая работу нейронной сети, для обработки данных RICH-детектора, являющаяся более эффективной по сравнению с другими методами при определении характеристик космических ядер.


Апробация результатов работы.

По теме диссертации опубликовано 77 работ в отечественных и зарубежных журналах: "Nuclear Instrument&Methods in Physics Research", "European Physical Journal", "Few-Body Systems", "Приборы и техника эксперимента", "Доклады Академии наук", "Radiation Measurements", "Известия РАН", "Письма в ЖТФ", "Вестник Отделения наук о Земле РАН", "Математическое моделирование" и др.


Результаты, полученные при анализе данных, неоднократно обсуждались на российских и международных конференциях и рабочих совещаниях. В частности, материалы диссертации докладывались на:

4th и 5th Conference on Nuclear and Particle Physics (2003, Fayoum, Egypt);

54 Международном совещании по ядерной спектроскопии и структуре атомного ядра (Белгород, 2004);

“Channeling 2004" – International Conference on Charged and Neutral Particles Channeling Phenomena (2004, Frascati, Italy);

LV National Conference on Nuclear Physics “Frontiers in the Physics of Nucleus” (2005, Saint-Petersburg):

International Conference Nuclear Physics and Atomic Energy (NPAE-2006, Киев);

23rd International Conference on Nuclear Tracks in Solids; (Beijing, China 2006);

56 Международной конференции по проблемам ядерной спектроскопии и структуре атомного ядра (2006, г. Саров);

Международной конференции “Current problems in nuclear physics and atomic energy” (NPAE-Kyiv 2006);

20th European Conference on Few-Body Problems in Physics (Pisa, Italy, 2007);

6th International Conference on Nuclear and Particle Physics (2007, Luxor, Egypt);

XXXVI Lunar and Planetary Science Conference (2007, League City, Texas);

18 международной конференции «Взаимодействие ионов с поверхностью», ВИП-2007, (2007 г., Звенигород, Россия);

7th International Conference on Radioactive Nuclear Beams (2006, Cortina d'Ampezzo, Italy);

VIII Международной конференции «Физико-химические и петрографические исследования в науках о Земле» (Москва, 2007 г.);

38th, 39th и 40th Lunar and Planetary Science Conference, (Houston, USA 2007, 2008, 2009);

30-й Всероссийской конференции по космическим лучам (2008 г., Санкт-Петербург);

9ой Международной конференция «Физико-химические и петрофизические исследования в науках о Земле» (Москва, 2008 г.);

24th International Conference on Nuclear Tracks in Solids (Bologna, Italy, 2008);

Conference CAMMAC (COMETS, ASTEROIDS, METEORS, METEORITES, ASTROBLEMS, CRATERS) (Украина, г. Винница, 2008);

XIX Международной конференции "Взаимодействие ионов с поверхностью" (ВИП-2009);

72 Annual Meeting of the Meteoritical Society (Nancy, France, 2009);


Общая структура работы. Диссертация состоит из восьми глав, в том числе Введение, Заключение и Приложение, содержит 167 страниц текста, 130 рисунков и список литературы из 162 наименований.
СОДЕРЖАНИЕ РАБОТЫ
Во введении описана современная ситуация в физике элементарных частиц, связанная с использованием твердотельных трековых детекторов (ТТД) в экспериментах, типы детекторов, методы обработки и анализа данных. Показаны преимущества ТТД по сравнению с другими типами детекторов. Приведены аргументы в пользу использования гибридных детекторов, объединяющих твёрдотельные детекторы и различные электронные системы для получения целеуказания и локализации области поиска треков в детекторе. Проанализирована современная ситуация с обработкой данных трековых детекторов в автоматическом режиме. На конкретных примерах показано, что практически все установки с автоматизированной системой обработки ТТД являются узкоспециализированными, позволяющими производить обработку данных только одного конкретного эксперимента, для которого они создавались. В этом смысле комплекс ПАВИКОМ - уникальная установка, поскольку является прибором многоцелевого назначения, успешно используемым для обработки самых разных твёрдотельных трековых детекторов: фотоэмульсии, пластика, рентгеновской плёнки, минералов. Очевидно, что при таком подходе к обработке данных на ПАВИКОМ ПК для автоматизированной обработки должен иметь гибкую структуру, которая позволяла бы перенастраивать её в случае необходимости анализировать треки с новым набором характеристик.
Во второй главе даётся краткое описание ПАВИКОМ и его системы управления, которая включает несколько блоков и отвечает за режимы движения микроскопа относительно изучаемого объекта и способы считывания и захвата изображений. Поскольку треки частиц представляют собой пространственные объекты внутри объема детектора, режим движения должен предусматривать достаточно сложную траекторию движения микроскопа по всем трём осям.

ПАВИКОМ – установка многоцелевого назначения, поэтому в этой главе приводятся примеры изображений следов частиц в экспериментах с различными твёрдотельными детекторами, которые обрабатываются на установке ПАВИКОМ. Эти примеры позволяют понять качественное различие в характеристиках треков и необходимость проводить их анализ на основе разных по составу наборов признаков.

В связи с тем, что анализ треков производится на основе широкого спектра характеристик следов частиц, разработка ПК велась с применением метода распознавания образов. В данной главе приводится краткое описание этого метода, существующих в нём понятий и приёмов.

Анализ изображений и обнаружение на них объектов с определенным набором характеристик разбивается на несколько этапов. Основными из них являются следующие:


1. Предварительная обработка изображений. Цель этого этапа - провести такое преобразование исходного изображения, чтобы, по возможности, отделить фон и помехи от анализируемых объектов.

2. Кластеризация – выделение анализируемых областей изображения (кластеров) как самостоятельных объектов и определение их характеристик.

3. Анализ кластеров и классификация отобранных объектов в соответствии с выбранным пространством признаков, распределение их по группам, исключение оставшихся помех.

4. Содержательный анализ полученных объектов и их групп. Получение физических результатов.


Одним из важнейших этапов обработки изображений является их предварительная обработка с целью выявить различие между фоном и искомыми объектами и сделать его по возможности более резким. Изображения, обрабатываемые на компьютере, имеют, как правило, форму прямоугольника, состоящего из многочисленных мелких прямоугольников, называемых пикселами. Их количество по вертикали и горизонтали характеризует разрешение изображения. Каждый пиксел, в свою очередь, характеризуется яркостью и цветом. Преобразования изображений сводятся к изменениям свойств пикселов. Большинство алгоритмов такого преобразования обычно называются фильтрами, так как многие из соответствующих методов и алгоритмов используют приёмы, разработанные для обработки электрических и акустических сигналов, когда с помощью специальных устройств отсекаются или ослабляются те или иные частоты колебаний.

В данной главе рассматриваются методы преобразования изображений, которые могут быть разбиты на три категории в зависимости от затрагиваемых областей: глобальная, локальная и точечная. При глобальных преобразованиях новое значение пиксела зависит от значений всех пикселов изображения, при локальном только от значений в некоторой его окрестности. При точечном преобразовании учитывается только значение текущего пиксела. В частности, приводятся сведения об использовании различных методов устранения помех и коррекции изображений таких, как сглаживающие, градиентные и нелинейные фильтры, а также нелинейные преобразования яркости и контрастности.

Приведены приёмы устранения аппаратных помех: неравномерность фона, наличие темных пятен с фиксированным положением на изображении и искажения за счёт недостатков оптической системы.

Важной характеристикой при обработке изображений является гистограмма почернений, которая показывает, сколько пикселов определённой степени почернения имеется на изображении. Её важность определяется несколькими обстоятельствами.

Во-первых, по ней оценивается качество предварительной обработки. Так, исходные изображения, как правило, характеризуются нерегулярной гистограммой. После обработки она должна иметь более гладкое поведение, что отражает более чёткое разделение фона и анализируемых объектов. Пример исходной гистограммы и полученной после обработки изображения фотоэмульсии в эксперименте на пучках 6He показан на рисунке 1. Шкала рисунка по горизонтали содержит числа от 0 до 255, что соответствует одному байту на один пиксел изображения, причём 0 соответствует чёрным пикселам, а 255 - белым. Промежуточные значения задают различные степени градации серого цвета.

Во-вторых, гистограмма помогает в выборе порога степени почернений при отсечении фона и кластеров следов частиц. Основной пик на гистограммах обработанных изображений, как правило, содержит пикселы фона. В наших задачах анализируемые объекты (следы частиц), будучи более тёмными, как правило, находятся на левом "хвосте" гистограмм. Основная задача бинаризации заключается в отделении этих объектов от фона. Для этого левая часть гистограммы анализируется таким образом, чтобы найти уровень почернения, который наиболее эффективным образом отсекает пикселы фона и части помех. На рисунке 1 оптимальный уровень порога на гистограмме после фильтрации и усиления контраста показан стрелкой (Тпор=101).


Рисунок 1.

Гистограмма почернений: кружок - исходное изображение, квадрат – после фильтрации, треугольник – после фильтрации и усиления контраста. Стрелка показывает порог степени почернения при бинаризации.
Решающее значение при анализе изображений играет оптимальный выбор пространства признаков, т.е. характеристик анализируемых объектов. В данной главе обсуждается процедура такого выбора на основе экспертной оценки специалистов в предметной области.

В приведённых в главе примерах изображений показано, что следы частиц в разных экспериментах отличаются по своим характеристикам настолько сильно, что их невозможно обработать в едином программном продукте. По этой причине автором был принят модульный вариант структуры ПК, в состав которого входят самостоятельные функциональные блоки, соответствующие отдельным этапам обработки изображений и которые могут быть собраны и настроены в соответствии с особенностями конкретного эксперимента. Основные блоки системы включают следующие составляющие:




  1. Блок, включающий операции с графическими файлами различных форматов и с видеопамятью компьютера и видеопоцессора для работы с автоматизированным микроскопом.

  2. Блок обработки изображений, включающий следующие разделы

    • Алгоритмы линейных преобразований изображений (градиентные, Лапласа, сглаживающие и т.д.)

    • Алгоритмы нелинейных преобразований изображений (медианные фильтры, повышение контраста и яркости, логические операции и т.д.)

    • Операции с гистограммой почернений (аппроксимация пиков несколькими функциями Гаусса, алгоритмы поиска порога отсечения фона, автоматизированная оценка качества изображений)

    • Операции по выделению кластеров треков и элементов треков частиц как самостоятельных объектов. Комплект классов для хранения информации о кластерах и их наборах.

    • Процедуры определения характеристик кластеров.

  3. Блок операций по поиску треков, вершин взаимодействия и их характеристик для разных экспериментальных задач. Комплект классов для хранения информации о треках.

  4. Блок математических операций, содержащий:

  • Комплект классов элементарных геометрических объектов в двух- и трёх- мерном пространстве - точки, прямые линии и операции с ними .

  • Алгоритм минимизации функционала на основе алгоритма Нелдера-Мида и набор классов для аппроксимации точек методом наименьших квадратов (аппроксимация наборов точек функциями Гаусса и Ландау, аппроксимация набора точек прямыми на плоскости и в пространстве с учётом возможных выбросов, аппроксимация произвольными функциями и т.д.).

  1. Блок визуализации. Представление результатов работы ПК в виде последовательности точек, кривых, гистограмм и поверхностей.

  2. Блок, выполняющий программным путём работу нейронной сети Хопфилда с обратным распространением ошибки (обучение и рабочий режим).

Такое деление соответствует также объектно-ориентированному подходу в программировании, принятому в языке С++, на котором разрабатывался созданный ПК. В таком представлении крупные блоки делятся на более мелкие объекты (классы), которые, в свою очередь, подразделяются на ещё более мелкие части. В итоге возникает иерархия классов, в целом воспроизводящая структуру системы в целом и связи между её отдельными частями. В каждой новой задаче собирается своя структура, отражающая особенности данной задачи.

В последующих двух главах подробно описаны наиболее важные блоки ПК и их реализация применительно к конкретным экспериментам.
В третьей главе описаны блоки предварительной обработки изображений и выделения отдельных кластеров как самостоятельных объектов.

Исходные изображения содержат множество посторонних объектов, которые затрудняют анализ, а также неравномерно распределённый на изображении фон. Поэтому они подвергаются предварительной обработке, цель которой – по возможности максимально разделить следы частиц и "шум". Предварительная обработка заключается в таком преобразовании исходного изображения, которое бы усилило следы частиц и ослабило элементы шума. Поскольку изображения трековых детекторов, обрабатываемых на установке ПАВИКОМ, сильно различаются, предварительная обработка рассматривается по группам.


Изображения в эмульсиях экспериментов EMU-15 и OPERA содержат следы, состоящие из отдельных блобов, которые образованы релятивистскими элементарными частицами. Отличительной особенностью эксперимента OPERA является наличие большого числа посторонних кластеров: объёмная вуаль, комптоновские электроны и другие фоновые частицы. Их свойства близки к свойствам кластеров от анализируемых частиц (продукты реакции нейтрино с мишенью) и по этой причине они не могут быть отделены на этапе предварительной обработки. Такое отделение производится на этапе трекинга при анализе пространственной конфигурации треков. Анализ различных вариантов обработки показал, что для получения удовлетворительного результата предварительной обработки изображений описанного выше качества достаточно применить фильтр Лапласа размером 9х9 (EMU-15) и 7х7 (OPERA) с последующей операцией увеличения контрастности.
Изображения в пластиковых детекторах эксперимента "Энергия плюс трансмутация", в котором с помощью пластикового детектора определяются потоки нейтронов, проявляют разнообразие размеров и форм кластеров, соответствующих трекам осколков ядер, возникающих после взаимодействия нейтронов с ядрами радиаторов. Это связано с разнообразием продуктов реакций, а также с произвольностью направлений движения частиц. Помимо кластеров от частиц на изображении присутствуют пятна посторонних включений. Размеры многих из них отличаются от кластеров частиц и могут быть отброшены на этапе предварительной обработки. Как показал опыт работы с данными изображениями, для удовлетворительного результата предварительной обработки и выделения кластеров достаточно провести обработку модифицированным фильтром Лапласа размером 11х11 и провести усиление контрастности. Модифицированный фильтр Лапласа строится на основе обычного, но в него вводится дополнительная асимметрия относительно диагонали.

Более сложная ситуация возникает в этом эксперименте при больших потоках нейтронов, когда многие треки частиц пересекают друг друга. В этом случае требуются более сложные методы. В данной работе для обработки таких изображений используются методы нечётких множеств, краткое описание которых приводится в главе IV при описании процедуры анализа треков. Основу обработки составляют матрицы вероятностей, приготовляемые заранее.


Обработка изображений релятивистских ядер в толстослойных эмульсиях. В целом ряде экспериментов (например, БЕККЕРЕЛЬ) требуется определить заряд частицы по характеристикам её трека. Кластеры следов частиц с зарядом q>1 и энергией более 1 ГэВ/нуклон при облучении эмульсии вдоль её поверхности представляют собой протяжённые образования, составленные из нескольких частей, разделённых промежутками. Для выделения кластеров в данном случае используется комбинация градиентных фильтров определённого направления в сочетании с последующим усилением контраста. От величины заряда зависят следующие характеристики трека: полная площадь кластеров, количество и полная длина промежутков между частями трека, количество дельта-электронов, выбитых из атомных оболочек ядер. Каждая из этих характеристик даёт свою оценку заряда частицы, однако их комбинация намного повышает точность его определения. Поэтому в пространство признаков в данном случае включены все перечисленные выше характеристики.
Обработка изображений взаимодействия ядер He6 c фотоэмульсией. Кластеры, образующиеся в эмульсии в данной реакции, отличаются большим разнообразием. Ядра He6 с полной энергией 60 МэВ испытывают большие потери при прохождении через эмульсию. В силу этого зёрна серебра появляются при проявке так часто, что сливаются между собой и трек представляет собой сплошную темную линию в пространстве. Изображения фотоэмульсии данного эксперимента обладают рядом особенностей, которые затрудняют их обработку. В частности:

1. Треки частиц, перпендикулярные к поверхности плёнки или близкие к перпендикулярным (ядра исходного пучка), дают на изображениях тёмные, короткие отрезки, геометрическое положение которых при переходе от слоя к слою по глубине плавно изменяется на каждом поле зрения. Ядра после рассеяния могут двигаться под большим углом по отношению к нормали к поверхности плёнки. В этом случае в область пространства, захватываемую объективом, из-за наличия глубины резкости попадает больший участок трека, который на изображении в микроскопе выглядит как протяжённый, но более бледный кластер. Одновременная обработка таких изображений при одних и тех же условиях невозможна. Чтобы обойти эту трудность, разработан алгоритм автоматической настройки параметров обработки в зависимости от качества изображений.

2. Другая трудность связана с наличием участков очень тёмного фона, на которых кластеры почти неразличимы. Для выделения следов в этом случае использовалась нелинейная процедура изменения контраста. Параметры преобразования были подобраны таким образом, чтобы наиболее тёмные области были более чувствительны к перепадам потемнений, чем другие области.

3. Частицы, движущиеся под большим углом к нормали к поверхности плёнки (ядра рассеяния), перемещаются на большие расстояния от слоя к слою. Поэтому при поиске продолжения трека необходимо знать направление движения, которое задается направлением оси кластера.

Перечисленные выше особенности треков приводят к необходимости задания более детального набора признаков, по сравнению с другими задачами. В него включены: координаты центра масс кластеров, их площадь, длина, ширина, направление оси кластера, средняя степень почернения, координаты пикселов границы.

Оптимальная процедура предварительной обработки включает асимметричный фильтр Лапласа и нелинейную процедуру повышения контраста.


Обработка изображений следов частиц в оливинах из метеоритов. Изображения в данном эксперименте обладают рядом особенностей, затрудняющих идентификацию треков частиц. В частности, кристаллы оливина, подлежащие исследованию, заключены в эпоксидную таблетку. При просмотре на микроскопе в поле зрения попадают некоторые участки таблетки, имеющие крайне неравномерное распределение степени почернения. Это приводит к появлению большого числа посторонних пятен, имитирующих следы частиц. Кроме того, сами кристаллы оливина содержат посторонние включения больших размеров, изображения которых после предварительной обработки распадаются на множество пятен. Эти помехи также значительно затрудняют идентификацию треков. Для преодоления этих трудностей и повышения эффективности анализа следов частиц, разработан алгоритм выделения определённых областей изображения, подлежащих обработке. В связи с чрезвычайной неоднородностью изображений в кристаллах дополнительно разработан графический интерфейс для пользовательских программ, позволяющий в полуавтоматическом режиме задавать область поиска.

Другая трудность обработки связана с тем, что после травления оливина в местах прохождения частиц образуются полые каналы с неровными стенками. При просмотре на микроскопе свет от источника подсветки преломляется и отражается на стенках канала. Вследствие этого некоторые участки трека выглядят как очень светлые пятна, намного светлее даже, чем фон. Это приводит к тому, что трек распадается на отдельные перемежающиеся тёмные и светлые пятна. При использовании обычного алгоритма для поиска следов трек приходилось «собирать» из нескольких разрозненных тёмных кусков, и не всегда удавалось полностью восстановить трек. Дополнительно разработанный алгоритм учёта светлых участков трека позволил полностью решить проблему распознавания в оливинах треков любой формы и разных по потемнению. По сравнению с обычным алгоритмом был введён второй порог отсечения, выделяющий наиболее светлые пятна, большинство которых принадлежит трекам. После их выделения они используются программой, чтобы дополнить недостающие участки треков, собранные из их темных частей.


В конце данной главы описан алгоритм выделения кластеров как самостоятельных объектов, т.е. определения координат всех пикселов, принадлежащих кластеру, а также приёмы определения геометрических характеристик кластеров (площадь, длина, направление оси и т.д.) и исследования их морфологических свойств.
В четвёртой главе описаны процедуры поиска треков частиц и определения их характеристик в экспериментах с ядерными фотоэмульсиями.
В первой части главы представлены результаты исследования структуры нейтроноизбыточных ядер в экспериментах с ядрами 6He. Характерной чертой таких ядер является наличие у них нейтронного гало. Этот эффект обусловлен наличием слабо связанных состояний нейтронов, расположенных вблизи континуума энергии связи. При этом плотность распределения периферийных нейтронов существенно меньше плотности распределения нейтронов внутри кора. Нейтронное облако, окружающее кор, простирается на гораздо большие расстояния, чем радиус ядра, определяемый соотношением R = 1.3A1/3.

Особый интерес вызывают ядра с двухнейтронным гало (6He, 11Li, 14Be). Задача более детального экспериментального изучения такой двухнейтронной структуры и, в частности, корреляций валентных нейтронов, полностью не решена до настоящего времени. Особенно интересен вопрос о том, как эти два нейтрона существуют в гало-ядре – как "динейтрон" или как "сигарообразная" конфигурация. Для исследования конфигурации двухнейтронного гало был предложен экспериментальный метод изучения нейтрон-нейтронных корреляций путем измерения сечений реакции передачи двух нейтронов [2].

Для исследования реакции передачи двух нейтронов 6Не + А —> 4Не + В проведено облучение стопок фотоэмульсий в Лаборатории ядерных реакций им. Г.В. Флерова (ОИЯИ, Дубна). Пучок 6Не с энергией 60 МэВ падал перпендикулярно к плоскости стопки из шести фотоэмульсий. Полная толщина стопки (~1600 мкм) превышала пробег частиц пучка 6Не с такой энергией и была достаточна для оста­новки вторичных частиц (4Не и ядер отдачи), рождаемых в каждом слое фотоэмульсии. Использование стопки фотоэмульсий позволяет одновременно получить данные о реакции передачи в широкой области энергии ядер-снарядов (гало-ядер): 20-60 МэВ,

Целью исследования был анализ кинематики взаимодействия ядер в случае реакции передачи двух нейтронов, который возможен в случае восстановления треков взаимодействующих частиц. Для выполнения этой задачи на основе ПК была приготовлена пользовательская программа, включающая предварительную обработку и дополненная специальным блоком восстановления треков.

Алгоритм восстановления треков основан на циклической процедуре поиска продолжения трека с помощью области поиска. Эта процедура различается для треков близких к нормали к поверхности плёнки и движущихся под большим углом к нормали. Для первых область поиска – квадрат со сторонами параллельными осям X и Y. Для вторых – вытянутый прямоугольник с длинной стороной, параллельной оси кластера. Для задания области поиска последние 5 точек трека аппроксимируются отрезком прямой. Середина области поиска определяется как точка пересечения отрезка и последующего уровня. Для продолжения трека на последующем уровне на нём ищутся кластеры, попадающие в область поиска, и запоминаются. После просмотра на одном уровне по Z областей поиска всех найденных к данному моменту треков, устраивается конкуренция между ними за кластер, если он попал в область поиска нескольких треков. Кластер отдаётся тому треку, к продолжению которого на данный уровень он ближе.

Из-за недопроявки середины плёнки часть кластеров может пропасть на этапе предварительной обработки. Поэтому по окончании сбора кластеров в треки производится сбор частей распавшихся треков.

Другая проблема связана с "распадом" длинных кластеров из-за неравномерности его степени потемнения и эффектов дифракции. В этом случае возникают посторонние "двойники" треков. Разработан алгоритм устранения "двойников".

Для поиска и восстановления вершины взаимодействия разработан алгоритм, основанный на просмотре окрестности трека и обнаружении вблизи него конца другого трека. Если вершина найдена, небольшие части треков вблизи вершины аппроксимируются отрезками прямой. После этого рассчитываются углы между этими отрезками, которые считаются углами реакции.

Энергия частиц разлёта оценивается по величине остаточного пробега.

В результате анализа кинематики были сделаны выводы о важной роли двухнейтронных конфигураций в изучаемом процессе.


Во второй части главы приведены результаты по разработке методики определения заряда релятивистских ядер в толстослойных эмульсиях. Определение зарядов фрагментов ядра-снаряда необходимо, например, при изучении внутренней структуры ядер, определении параметра удара взаимодействия, оценки числа нуклонов, участвовавших во взаимодействии и др. Эти вопросы возникают при решении глобальных проблем ядерной физики, таких как, например, исследование синтеза ядер во Вселенной, изучении строения ядер и механизма ядерных взаимодействий.

С целью создания методики определения заряда на установке ПАВИКОМ были просканированы пленки ядерной фотоэмульсии, облучённые на синхрофазотроне ЛВЭ ОИЯИ ядрами 28Si с импульсом 4.5 ГэВ/нуклон. По мере прохождения через плёнку ядра 28Si фрагментировали. Заряды фрагментов налетающего ядра 28Si (с Zфр=3,5,6,7,9,11,12,14,16) были предварительно определены без применения вычислительной техники вручную методами счета разрывов и/или числа дельта-электронов на их треке. Это было сделано для последующей оценки эффективности автоматизированной процедуры определения заряда.

После процедуры предварительной обработки производился поиск треков частиц, которые обладают следующими особенностями:

- они либо сплошные, либо состоят из нескольких достаточно длинных кусков;

- треки направлены под малым углом к поверхности плёнки и ее длинной стороне (ось X);

- треки направлены почти перпендикулярно к короткой стороне плёнки (ось Y).

Алгоритм поиска строился с учётом этих особенностей. После выделения кластеров строилось распределение их пикселов по координате y. Положение пика на этой гистограмме указывает область координат y, где расположен трек ядра.

Для построения оси трека изображение пленки разбивалось на 20 частей. На каждой части строилась гистограмма распределений по координате y. Максимум этих гистограмм, как правило, также соответствует положению середины трека. Полученные 20 точек положения середины трека аппроксимируются прямой. Алгоритм аппроксимации предусматривает возможность исключения выбросов в наборе из 20 точек. Такой выброс возможен, если в какой-то области пленки имеется тёмное протяжённое пятно, имеющее максимум на гистограмме больший, чем трек.

После определения оси производился отбор кластеров, имеющих общие точки с осью. Они считались принадлежащими треку. После этого определялись его характеристики, в качестве которых приняты следующие величины:

- сумма числа всех пикселов трека;

- число (Ne) дельта-электронов. Для вычисления этой характеристики сверху и снизу от оси проводятся две параллельные ей прямые на определенном расстоянии (для обрабатываемой пластинки это было 1.4 мкм). Числом электронов считается величина, равная половине от числа пересечений прямыми границ кластеров трека;

- сумма (Ре) периметров кривых, огибающих треки дельта-электронов -параметр, позволяющий учитывать длину пробега дельта-электронов;

- количество (Ng) промежутков между кластерами трека;

- суммарная длина (Lg) промежутков между кластерами трека.


Используя заряды ядер, полученные при ручной обработке, были построены калибровочные кривые зависимости перечисленных величин от заряда. Для проверки эффективности автоматизированного определения заряда были обработаны плёнки с неизвестным зарядом, которые затем были обработаны вручную. Результаты представлены в таблице 1.
Таблица 1.

Заряд, определенный микроскопистом

Заряд, определенный автоматически

первичный

Фрагмент

первичный

фрагмент

12

10

12.2±0.4

10.2±0.3




5




4.9±0.3

12




12.2+0.4

10.2+0.3

12

6

12.2±0.4

6.6+0.5

10

6

9.3+0.6

5.9±0.4

14

13

14+0.5

13.3+0.5

Кроме того, проведен анализ влияния положения трека по глубине на характеристики треков. Такое влияние возможно из-за эффекта неравномерности проявки толстой плёнки. Было показано, что такое влияние существенно только в тонком слое плёнки (50 мкм), прилегающем к стеклянной подложке.


В третьей части главы приведены результаты изучения уровней возбуждения ядер путём анализа спектра электронов внутренней конверсии. С помощью бета-спектрографов ЛЯР ОИЯИ были получены бета-спектрограммы изотопа Er, приготовленные в виде тонких источников. Для этого изотоп электролизом высаживался на платиновую проволоку размером 10-100 мкм, которая устанавливалась в бета-спектрографе в качестве источника для облучения ядерной фотоэмульсии типа Р-50 размером 400х15 мм. Среди продуктов распада Er присутствуют изотопы различных ядер. Предметом исследования были линии электронов внутренней конверсии изотопа 161Ho.

Пластины были отсканированы на установке ПАВИКОМ и проанализированы с помощью ПК. Расстояние до спектральной линии вдоль длинной стороны эмульсии (ось X) определяет энергию электрона. Среди величин, подлежащих определению, были относительные интенсивности линий, связанные со степенью потемнения плёнки. Поэтому пластины не подвергались предварительной обработке, искажающей величины градации серого. Для повышения эффективности анализа был разработан специальный алгоритм устранения помех (пятна, царапины) и неоднородностей фона, суть которого в следующем.

Размер изображения, использованной для обработки этого эксперимента CCD-камеры, вдоль оси Y составляет 1024 пиксела. Для устранения помех в виде темных и светлых пятен 1024 величин степени почернения пикселов, имеющих фиксированное значение координаты X, а значит и энергии, разбивались на 32 группы по 32 пиксела в каждой. В каждой группе вычислялись средние величины степени потемнения. Затем эти средние ранжировались по величине и отбрасывались первые и последние 10 членов этой последовательности. Среднее оставшихся 12 принималось за величину почернения в данной точке по X.

Линейные координаты X пересчитывались в энергию с учётом геометрии установки и магнитного поля равного 220 Гаусс. Форма интенсивных линий аппроксимировалась функциями Ландау, а слабых функциями Гаусса. Областью поиска новых линий служила энергия в диапазоне 130 – 140 КэВ. Для дополнительной калибровки нашей шкалы была выбрана интенсивная К-линия 161Ho с хорошо известной энергией 139,83 кэВ. В результате анализа был найден триплет L1,2,3-линий 161Ho, причём линии L2 (139,09 КэВ) и L3 (140,01 КэВ) ранее отсутствовали в атласе линий атомных ядер.

следующая страница >>