Лекция 2 (Тема 2) Анализ связанной группы решений в условиях частичной неопределенности - umotnas.ru o_O
Главная
Поиск по ключевым словам:
страница 1
Похожие работы
Название работы Кол-во страниц Размер
Тема. Принятие решений в условиях неопределенности 2 455.74kb.
Задача Рассмотрите сложную лотерею, где и. Найдите эквивалентную... 1 31.58kb.
Лекция приемы разработки и выборов управленческих решений 1 193.21kb.
Стратегии принятия инновационных решений в условиях риска и неопределённости 1 88.08kb.
Задача линейного программирования. Симплекс-методы. Критерии выбора... 1 13.46kb.
Лекция №17 Эффективность управленческих решений План в эффективность... 1 234.81kb.
Лекция №9 «Общие сведения о неопределенности и риске» План 1 285.08kb.
Концептуальные «каркасы» онтологий в поддержке принятия решений в... 1 166.57kb.
Синтез систем управления для массообменных технологических процессов... 1 574.22kb.
Лекция Системы поддержки принятия решений Тем Системы поддержки принятия... 1 101.41kb.
Лекция 03. 04. 07 Принятие решений как функция менеджмента 1 65.61kb.
Методика оценки эффективности внешнеэкономической политики государства... 1 145.4kb.
Викторина для любознательных: «Занимательная биология» 1 9.92kb.

Лекция 2 (Тема 2) Анализ связанной группы решений в условиях частичной неопределенности - страница №1/1





Лекция 2 (Тема 2)

2.3. Анализ связанной группы решений в условиях частичной

неопределенности


Если при принятии решения ЛПР известны вероятности pj того, что реальная ситуация может развиваться по варианту, то говорят, что ЛПР находится в условиях частичной неопределенности. В этом случае можно руководствоваться одним из следующих критериев (правил).

Критерий (правило) максимизации среднего ожидаемого дохода. Этот критерий называется также критерием максимума среднего выигрыша. Если известны вероятности pj вариантов развития реальной ситуации, то доход, получаемый при i-ом решении, является случайной величиной Qi с рядом распределения


qi1

qi2



qin

p1

p2



pn


Математическое ожидание M[Qi] случайной величины Qi и есть средний ожидаемый доход, обозначаемый также :

= M[Qi ] = .

Для каждого i-го варианта решения рассчитываются величины , и в соответствии с рассматриваемым критерием выбирается вариант, для которого достигается

Пример 2.6. Пусть для исходных данных примера 2.1 известны вероятности развития реальной ситуации по каждому из четырех вариантов, образующих полную группу событий:

p1 =1/2, p2=1/6, p3=1/6, p4=1/6. Выяснить, при каком варианте решения достигается наибольший средний доход и какова величина этого дохода.

Решение. Найдем для каждого i-го варианта решения средний ожидаемый доход: =1/2*5+1/6*2+1/6*8+1/6*4= 29/6, = 25/6, = 7, = 17/6. Максимальный средний ожидаемый доход равен 7 и соответствует третьему решению.

Правило минимизации среднего ожидаемого риска (другое название – критерий минимума среднего проигрыша).

В тех же условиях, что и в предыдущем случае, риск ЛПР при выборе i-го решения является случайной величиной Ri с рядом распределения




ri1

ri2



rin

p1

p2



pn

Математическое ожидание M[Ri] и есть средний ожидаемый риск, обозначаемый также : = M[Ri] = .. Правило рекомендует принять решение, влекущее минимальный средний ожидаемый риск: .



Пример 2.7. Исходные данные те же, что и в примере 2.6. Определить, при каком варианте решения достигается наименьший средний ожидаемый риск, и найти величину минимального среднего ожидаемого риска (проигрыша).

Решение. Для каждого i-го варианта решения найдем величину среднего ожидаемого риска. На основе заданной матрицы риска R найдем: = 1/2*3+1/6*3+1/6*0+1/6*8=20/6, = 4, = 7/6, = 32/6.

Следовательно, минимальный средний ожидаемый риск равен 7/6 и соответствует третьему решению: = 7/6.



Замечание. Когда говорят о среднем ожидаемом доходе (выигрыше) или о среднем ожидаемом риске (проигрыше), то подразумевают возможность многократного повторения процесса принятия решения по описанной схеме или фактическое неоднократное повторение такого процесса в прошлом. Условность данного предположения заключается в том, что реально требуемого количества таких повторений может и не быть.

Критерий (правило) Лапласа равновозможности (безразличия). Этот критерий непосредственно не относится к случаю частичной неопределеннос-ти, и его применяют в условиях полной неопределенности. Однако здесь предполагается, что все состояния среды (все варианты реальной ситуации) равновероятны – отсюда и название критерия. Тогда описанные выше схемы расчета можно применить, считая вероятности pj одинаковыми для всех вариантов реальной ситуации и равными 1/n. Так, при использовании критерия максимизации среднего ожидаемого дохода выбирается решение, при котором достигается . А в соответсвии с критерием минимизации среднего ожидаемого риска выбирается вариант решения, для которого обеспечивается .

Пример 2.8. Используя критерий Лапласа равновозможности для исходных данных примера 2.1, выбрать наилучший вариант решения на основе: а) правила максимизации среднего ожидаемого дохода; б) правила минимизации среднего ожидаемого риска.

Решение: а) С учетом равновероятности вариантов реальной ситуации величины среднего ожидаемого дохода для каждого из вариантов решения составляют = (5+2+8+4)/4=19/4, = 21/4, = 26/4, = 15/4. Следовательно, наилучшим вариантом решения будет третий, и максимальный средний ожидаемый доход будет равен 26/4.

б) Для каждого варианта решения рассчитаем величины среднего ожидаемого риска на основе матрицы рисков с учетом равновероятности вариантов ситуации: = (3+3+0+8)/4 = 14/4, = 3, = 7/4, = 18/4. Отсюда следует, что наилучшим будет третий вариант, и при этом минимальный средний ожидаемый риск составит 7/4.



2.4. Оптимальность по Парето двухкритериальных финансовых

операций в условиях неопределенности



Из рассмотренного выше следует, что каждое ре­шение (финансовая операция) имеет две характеристики, которые нуждаются в оптимизации: средний ожидаемый доход и средний ожидаемый риск. Таким образом, выбор наилучшего решения является оптими­зационной двухкритериальной задачей. В задачах многокритериальной оптимизации основным понятием является понятие оптимальности по Парето 1. Рассмотрим это понятие для финансовых операций с двумя указанными характеристиками.

Пусть каждая операция а имеет две числовые характеристики Е(а), r(а) (например, эффективность и риск); при оптимизации Е стремятся увеличить, а r уменьшить.

Существует несколько способов постановки таких оптимизационных задач. Рассмотрим такую задачу в общем виде. Пусть А не­которое множество операций, и разные операции обязательно различаются хо­тя бы одной характеристикой. При выборе наилучшей опе­рации желательно, чтобы Е было больше, а r меньше.

Будем говорить, что операция а доминирует операцию b, и обозначать а > b, если Е(а) Е(b) и r(a) r(b) и хотя бы одно из этих неравенств строгое. При этом операция а на­зывается доминирующей, а операция b доминируемой. Очевидно, что никакая доминируемая операция не может быть признана наилучшей. Следовательно, наилучшую операцию надо искать среди недоминируемых операций. Множество недоминируемых операций назы­вается множеством (областью) Парето или множеством оптимально­сти по Парето2.

Для множества Парето справедливо утверждение: каждая из характе­ристик Е, r является однозначной функцией другой, т.е. на множестве Парето по од­ной характеристике операции можно однозначно определить другую.

Вернемся к анализу финансовых решений в условиях частичной неопределенности. Как показано в разделе 2.3, каждая операция характеризуется средним ожидаемым риском и средним ожидаемым доходом . Если ввести прямоугольную систему координат, на оси абсцисс которой откладывать значения , а на оси ординат – значения , то каждой операции будет соответствовать точка (,) на координатной плоскости. Чем выше эта точка на плоскости, тем доходнее операция; чем правее точка, тем более рисковая операция. Следовательно, при поиске недоминируемых операций (множества Парето) нужно выбирать точки выше и левее. Таким образом, множество Парето для исходных данных примеров 2.6 и 2.7 состоит только из одной третьей операции.

Для определения лучшей операции в ряде случаев можно применять некоторую взвешивающую формулу, в которую характеристики и входят с определенными весами, и которая дает одно число, задающее лучшую операцию. Пусть, например, для операции i с характеристиками (,) взвешивающая формула имеет вид f(i) = 3 - 2, и наилучшая операция выбирается по максимуму величины f(i). Эта взвешивающая формула означает, что ЛПР согласен на увеличение риска на три единицы, если доход операции увеличится при этом не менее чем на две единицы. Таким образом, взвешивающая формула выражает отношение ЛПР к показателям дохода и риска.



Пример 2.9. Пусть исходные данные те же, что и в примерах 2.6 и 2.7, т.е. для матриц последствий и риска примера 2.1 известны вероятности вариантов развития реальной ситуации: p1 =1/2, p2=1/6, p3=1/6, p4=1/6. В этих условиях ЛПР согласен на увеличение риска на две единицы, если при этом доход операции увеличится не менее, чем на одну единицу. Определить для этого случая наилучшую операцию.

Решение. Взвешивающая формула имеет вид f(i) = 2 - . Используя результаты расчетов в примерах 2.6 и 2.7, находим:

f(1) = 2*29/6 – 20/6 = 6,33; f(2) = 2*25/6 – 4 = 4,33;

f(3) = 2*7 – 7/6 = 12,83; f(4) = 2*17/6 – 32/6 = 0,33

Следовательно, лучшей является третья операция, а худшей – четвертая.




1 Критерий оптимальности итальянского экономиста В.Парето применяется при решении многокритериальных задач, в которых оптимизация означает улучшение одних показателей при условии, что другие при этом не ухудшаются.

2 Множеством, или областью Парето в общем случае называют множество всех допустимых решений, для которых невозможно одновременно улучшить все частные показатели эффективности в задачах многокритериальной оптимизации, т.е. невозможно улучшить хотя бы один из них, не ухудшая остальных. Принадлежащие множеству Парето решения называются эффективными, или оптимальными по Парето.