Исследовательская работа по теме «Колебательное движение маятников различной формы» - umotnas.ru o_O
Главная
Поиск по ключевым словам:
страница 1
Похожие работы
Название работы Кол-во страниц Размер
Лабораторная работа №6 опредение ускорения свободного падения при... 1 111.09kb.
Исследовательская работа: «Движение тела по наклонной плоскости с... 1 63.61kb.
Урок по теме «Механические колебания» в 9 классе Викторовской сош... 1 71.21kb.
Лабораторная работа №05 Крутильный маятник 1 104.98kb.
16. колебательное движение 3 604.55kb.
Изучить темы: Величины, характеризующие колебательное движение. 1 35.05kb.
Сочинение на заданную тему. Исследовательская работа 1 117.65kb.
Исследовательская работа по теме: «Сильнее! Выше! Быстрее!» (математика... 1 284.45kb.
Научно-исследовательская работа. Научно-исследовательская работа... 1 18.52kb.
Исследовательская работа студентов и преподавателей в училище (по... 1 75.37kb.
Исследовательская работа «Вклад российских немцев в развитие Российского... 1 155.46kb.
Кр механические колебания и волны. 8 Класс 1 192.24kb.
Викторина для любознательных: «Занимательная биология» 1 9.92kb.

Исследовательская работа по теме «Колебательное движение маятников различной формы» - страница №1/1

Муниципальное общеобразовательное учреждение

«Лицей №1 им.А.П.Гужвина г.Камызяк»


Учебно - исследовательская работа

по теме «Колебательное движение маятников различной формы»

(предмет «ФИЗИКА»)

Выполнил: ученик 10 Д класса

Жаткин Андрей

Руководитель: учитель физики и информатики

Кузин В.Ф.

Камызяк 2008

Цель: Доказать, что траектория движения физического и математического маятника изменяется в зависимости от формы подвеса и количества колеблющихся тел.
Задачи:

1. Проверить формулу периода колебаний маятников различной формы.

2. Исследовать зависимость траектории движения маятника от формы подвеса.

3. Исследовать зависимость траектории движения маятника от количества колеблющихся тел.


Оборудование: часы с секундной стрелкой, штативы лабораторные – 6 шт., металлический диск на подставке из набора по механике «Вращательное движение», три вилки для еды, средняя картофелина, булавка, пробка, широкая тарелка,

маятники: а) пружинный маятник;

б) математический маятник;

в) маятник с бифилярным подвесом;

г) маятник с раздвоенным подвесом;

д) связанные маятники;

е) двойной маятник;

ж) горизонтальный маятник Цельнера.



Исследование №1. Проверка формулы периода колебаний пружинного маятника.

Пружинный маятник - это система тел: пружина и скрепленное с ней тело.

Период колебания такого маятника определяется формулой:

С другой стороны этот же период можно рассчитать так. Подсчитаем за сколько времени будет совершено 30 колебаний t = 16 c.



Следовательно, T= 16/30 ≈ 0,53 с.





опыта

N

t,c

tср,c

Тср=∆ tср/N

1


30

16с

0,54

0,53

Вывод: мы видим по результатам опыта, что формула верна.

Исследование №2. Проверка формулы периода колебаний пружинного маятника с двумя параллельно скрепленными пружинами

Период колебания такого маятника определяется формулой:




Рассчитаем период колебания такого маятника как и в исследовании 1):

N=30, t=12 с, Т= 12/30=0,4 с








опыта

N

t,c

tср,c

Тср=∆ tср/N

2


30

16с

0,38

0,4

Вывод: Мы видим по результатам опыта, что формула верна.

3. Исследование №3. Проверка формулы периода колебаний математического маятника.

Математическим маятником называется подвешенный к тонкой нити груз, размеры которого много меньше длины нити, а его масса много больше массы нити. Это значит, что тело (груз) и нить должны быть такими, чтобы груз можно было считать материальной точкой, а нить невесомой. Тогда период Т колебаний математического маятника будет равен: , где l - длина маятника, g = 9,8 м/с2 .

Пусть l=1,57 м. Тогда, с

Рассчитаем период колебания такого маятника по формуле T=t/N где t=98с, N=40 колебаний. Т= 98/40 =2,45с.

Вывод: Мы видим по результатам опыта что формула верна.

4. Исследование №4. Проверка формулы периода колебаний маятника с бифилярным подвесом.

Этот маятник колеблется по тем же законам что и математический маятник. Двойной подвес не дает этому маятнику возможность вращаться вокруг вертикальной оси, таким образом колебания этого маятника будет

происходить только в одной плоскости.
5. Исследование №5. Наблюдение траектории движения маятника с раздвоенным подвесом.

Длина нити l маятника должна быть намного больше длин нитей верхней раздвоенной части подвеса. Толкнем маятник под углом к плоскости рисунка и увидим, что сначала маятник будет качаться в направлении толчка, но в скоро его движение перейдет во вращение вокруг вертикальной оси. Затем маятник вновь начнет колебаться в плоскости, но уже не в той в которой его толкнули. После это вновь начнется вращение, но уже в другую сторону. Постепенно оно сменится движением в другую сторону. Постепенно оно сменится движением в направление первоначального толчка потом все повторится с начала. Эта траектория более или менее равномерно заполняет весь квадрат. Диагональ этого квадрата равна удвоенной амплитуде колебания. Такое движение маятника объясняется сложением независимых колебаний раздвоенного подвеса и самого маятника.


6. Исследование №6. Наблюдение траектории движения связанных маятников на колеблющемся мягком подвесе.

Это два одинаковых маятника связанные нитью CD в точках подвеса.

а) Если отклонить левый маятник от положения равновесия и отпустить, то через некоторое время правый маятник начнет колебаться в такт левого маятника, затем левый маятник остановится, а правый будет продолжать колебаться. Через некоторое время левый начнет снова колебаться, а правый остановится. Потом все повторится. Это объясняется тем, что при отклонении левого маятника связывающая их нить деформируется и сила упругости воздействует на правый маятник, сообщая ему ускорение. Левый маятник будет колебаться со все меньшей амплитудой, и наконец остановится. В это время амплитуда правого маятника будет наибольшей. Потом раскачивается левый маятник, а правый остановится и так дальше. Изменение амплитуды колебаний маятников происходит за счет передачи энергии от одного маятника к другому.

б) Если уменьшить расстояние между точками C и D или уменьшить массу маятников, то отклонение и остановка маятников произойдут быстрее, т.к. сила упругости в первом случае возрастет, а инертность маятников во втором случае уменьшится, что приведет к более быстрой передаче энергии от одного маятника к другому.



7. Исследование №7. Наблюдение траектории движения связанных маятников на закрепленном жестком подвесе (раме).

Отклоним один из маятников и опустим. Маятники будут двигаться также как и в предыдущем опыте, но остановка маятников будет происходить чаще.




8. Исследование №8. Наблюдение траектории движения двойного маятника.

Это маятник, у которого верхний груз намного тяжелее нижнего, а длины нитей одинаковы.

Толкнем нижний грузик и будем наблюдать за его движениями. При движении двойного маятника наблюдается усиление, а затем ослабление колебаний. Легкий маятник то колеблется с большим размахом, то почти останавливается. Движения большого маятника может быть совсем не заметным. Таким колебание называется биением. Оно объясняется сложением двух нормальных колебаний большого и маленького шариков.

9. Исследование №9. Наблюдение траектории движения горизонтального маятника Цельнера.

Такой маятник представляет собой стерженёк с грузиком на одном конце, зафиксированный горизонтально с помощью двух вертикальных струнных растяжек, из которых нижняя прикреплена к свободному концу стерженька, а верхняя – к точке, немного отстоящей от свободного конца. Это бесхитростное устройство практически не реагирует на вертикальные возмущения, но обладает исключительно высокой чувствительностью к горизонтальным возмущениям. Этот маятник был использован при исследованиях горизонтальных составляющих приливообразующих сил.



Усреднённая реакция маятника Цельнера

на солнечные воздействия.

 Как можно видеть, полученная кривая представляет собой сумму двух главных компонент – суточной и полусуточной. Обратим внимание: суточная компонен-та не только доминирует, но и её макси-мумы, с противоположными знаками, приходятся примерно на 6 и 18 часов – когда, согласно традиционным, представлениям, горизонтальные компоненты приливообразующих сил должны быть близки к нулю.



10. Исследование №9. Наблюдение траектории движения маятника Фуко.

У себя в комнате, за столом, мы можем повторить знамени-тый опыт, который Фуко показал в 1851 г. под куполом Парижского Пантеона (длина подвеса маятника 98 м).


Проткнем яблоко или картофелину тонкой лучинкой так, чтобы oба ее конца торчали снаружи. К одному концу привяжем нитку. Это будет маятник.
Свободный конец нитки привяжем к булавке, воткнутой в пробку; установим эту пробку на трех вилках, воткнутых в нее наискось.
Поставим треножник на тарелку и отрегулируем длину нитки так, чтобы нижний конец лучинки доходил почти до дна тарелки. У краев тарелки насыпем два валика из сахарной пудры или мелкой соли. Они заменят нам песок, который Фуко насыпал по кругу вокруг своего маятника. Все устройство поместим на легко вращающийся металлический диск из набора по механике для демонстрации вращательного движения.
Качнем теперь маятник: лучинка прочертит свой след в кучках сахарной пудры, и при каждом касании маятника конец лучинки будет проходить точно по своему же следу. Но тарелка наша изображает вращающуюся Землю. Подражая вращению Земли, потихоньку, без толчков, будем поворачивать диск с тарелкой.
Направление колебаний маятника останется прежним, но он продолжает раскачиваться в той же плоскости, оставляя новые следы рядом с теми, что начертил в начале нашего опыта. Изменилось положение тарелки, одновременно изменилось положение треножника; между тем маятник продолжает раскачиваться в той же плоскости, что и прежде. Этот опыт доказывает вращение Земли.
Выводы: Траектория движения маятника изменяется в зависимости от формы подвеса и количества колеблющихся тел. Маятники можно использовать для доказательства суточного вращения Земли и объяснения приливообразующих сил.