Функции нескольких переменных - umotnas.ru o_O
Главная
Поиск по ключевым словам:
страница 1
Похожие работы
Название работы Кол-во страниц Размер
Функции нескольких переменных. Основные определения и понятия. 1 44.21kb.
Вопросы по алгебре (2 семестр) 1 29.14kb.
Вопросы к экзамену по курсу «математический анализ» 1 26.91kb.
«Дифференциальное исчисление функций нескольких переменных и кратные... 2 447.42kb.
Учебная программа курса «Математический анализ» 1 348.48kb.
Дельта-вектор в сверточных алгебрах 1 84.99kb.
Задание № Необходимые и достаточные условия безусловного экстремума 1 40.6kb.
Математический анализ 1 16.98kb.
Определение типа уравнения. Приведение к каноническому виду Пример... 1 111.57kb.
Решение план введение. Общая задача линейного программирования 1 207.96kb.
Контрольная работа по математическому анализу 2 семестр Вариант 2... 1 95.56kb.
Лекция №16 (18. 12. 10) Найдём характеристику числовых полей R, c... 1 66.04kb.
Викторина для любознательных: «Занимательная биология» 1 9.92kb.

Функции нескольких переменных - страница №1/1


1

Содержание:
Функции нескольких переменных.

Предел.

Непрерывность.

Наибольшее и наименьшее значения.

Частное приращение.

Частная производная.

Геометрический смысл частных производных.

Полное приращение и полный дифференциал.

Касательная плоскость и нормаль к поверхности.

Приближенные вычисления с помощью полного дифференциала.

Частные производные и дифференциалы высших порядков.

Экстремум функции нескольких переменных.

Необходимые условия экстремума.

Достаточные условия экстремума.

Условный экстремум.

Функция Лагранжа.

Производная по направлению.

Направляющие косинусы.

Градиент.

Связь градиента с производной по направлению.

Кратные интегралы.

Двойные интегралы.

Условия существования двойного интеграла.

Свойства двойного интеграла.

Вычисление двойного интеграла.

Замена переменных в двойном интеграле.

Якобиан.

Двойной интеграл в полярных координатах.

Тройной интеграл.

Замена переменных в тройном интеграле.

Цилиндрическая система координат.

Сферическая система координат.

Геометрические и физические приложения кратных интегралов.

Функции нескольких переменных


При рассмотрении функций нескольких переменных ограничимся подробным описанием функций двух переменных, т.к. все полученные результаты будут справедливы для функций произвольного числа переменных.
Определение: Если каждой паре независимых друг от друга чисел (х, у) из некоторого множества по какому - либо правилу ставится в соответствие одно или несколько значений переменной z, то переменная z называется функцией двух переменных.

z = f(x, y)


Определение: Если паре чисел (х, у) соответствует одно значение z, то функция называется однозначной, а если более одного, то – многозначной.
Определение: Областью определения функции z называется совокупность пар (х, у), при которых функция z существует.
Определение: Окрестностью точки М00, у0) радиуса r называется совокупность всех точек (х, у), которые удовлетворяют условию .
Определение: Число А называется пределом функции f(x, y) при стремлении точки М(х, у) к точке М00, у0), если для каждого числа  > 0 найдется такое число r >0, что для любой точки М(х, у), для которых верно условие

также верно и условие .

Записывают:
Определение: Пусть точка М00, у0) принадлежит области определения функции f(x, y). Тогда функция z = f(x, y) называется непрерывной в точке М00, у0), если

(1)

причем точка М(х, у) стремится к точке М00, у0) произвольным образом.


Если в какой – либо точке условие (1) не выполняется, то эта точка называется точкой разрыва функции f(x, y). Это может быть в следующих случаях:

  1. Функция z = f(x, y) не определена в точке М00, у0).

  2. Не существует предел .

  3. Этот предел существует, но он не равен f( x0, y0).


Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой и

ограниченной области D, то в этой области найдется по крайней мере одна точка

N(x0, y0, …), такая, что для остальных точек верно неравенство

f(x0, y0, …)  f(x, y, …)

а также точка N1(x01, y01, …), такая, что для всех остальных точек верно неравенство

f(x01, y01, …)  f(x, y, …)

тогда f(x0, y0, …) = M – наибольшее значение функции, а f(x01, y01, …) = m – наименьшее значение функции f(x, y, …) в области D.

Непрерывная функция в замкнутой и ограниченной области D достигает по крайней мере один раз наибольшего значения и один раз наименьшего.


Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, а M и m – соответственно наибольшее и наименьшее значения функции в этой области, то для любой точки   [m, M] существует точка

N0(x0, y0, …) такая, что f(x0, y0, …) = .


Проще говоря, непрерывная функция принимает в области D все промежуточные значения между M и m. Следствием этого свойства может служить заключение, что если числа M и m разных знаков, то в области D функция по крайней мере один раз обращается в ноль.
Свойство. Функция f(x, y, …), непрерывная в замкнутой ограниченной области D, ограничена в этой области, если существует такое число К, что для всех точек области верно неравенство .
Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, то она равномерно непрерывна в этой области, т.е. для любого положительного числа  существует такое число  > 0, что для любых двух точек (х1, y1) и (х2, у2) области, находящихся на расстоянии, меньшем , выполнено неравенство

Приведенные выше свойства аналогичны свойствам функций одной переменной, непрерывных на отрезке. См. Свойства функций, непрерывных на отрезке.


Производные и дифференциалы функций

нескольких переменных.
Определение. Пусть в некоторой области задана функция z = f(x, y). Возьмем произвольную точку М(х, у) и зададим приращение х к переменной х. Тогда величина xz = f( x + x, y) – f(x, y) называется частным приращением функции по х.
Можно записать

.
Тогда называется частной производной функции z = f(x, y) по х.

Обозначение:


Аналогично определяется частная производная функции по у.


Геометрическим смыслом частной производной (допустим ) является тангенс угла наклона касательной, проведенной в точке N0(x0, y0, z0) к сечению поверхности плоскостью у = у0.


Полное приращение и полный дифференциал.
Определение. Для функции f(x, y) выражение z = f( x + x, y + y) – f(x, y) называется полным приращением.
Если функция f(x, y) имеет непрерывные частные производные, то

Применим теорему Лагранжа (см. Теорема Лагранжа.) к выражениям, стоящим в квадратных скобках.







здесь


Тогда получаем


Т.к. частные производные непрерывны, то можно записать равенства:




Определение. Выражение называется полным приращением функции f(x, y) в некоторой точке (х, у), где 1 и 2 – бесконечно малые функции при х  0 и у  0 соответственно.

Определение: Полным дифференциалом функции z = f(x, y) называется главная линейная относительно х и у приращения функции z в точке (х, у).


Для функции произвольного числа переменных:


Пример. Найти полный дифференциал функции .





Пример. Найти полный дифференциал функции






Геометрический смысл полного дифференциала.

Касательная плоскость и нормаль к поверхности.

нормаль

N

 N0



касательная плоскость

Пусть N и N0 – точки данной поверхности. Проведем прямую NN0. Плоскость, которая проходит через точку N0, называется касательной плоскостью к поверхности, если угол между секущей NN0 и этой плоскостью стремится к нулю, когда стремится к нулю расстояние NN0.


Определение. Нормалью к поверхности в точке N0 называется прямая, проходящая через точку N0 перпендикулярно касательной плоскости к этой поверхности.
В какой – либо точке поверхность имеет, либо только одну касательную плоскость, либо не имеет ее вовсе.
Если поверхность задана уравнением z = f(x, y), где f(x, y) – функция, дифференцируемая в точке М00, у0), касательная плоскость в точке N0(x0,y0,(x0,y0)) существует и имеет уравнение:

.
Уравнение нормали к поверхности в этой точке:

Геометрическим смыслом полного дифференциала функции двух переменных f(x, y) в точке (х0, у0) является приращение аппликаты (координаты z) касательной плоскости к поверхности при переходе от точки (х0, у0) к точке (х0+х, у0+у).

Как видно, геометрический смысл полного дифференциала функции двух переменных является пространственным аналогом геометрического смысла дифференциала функции одной переменной.
Пример. Найти уравнения касательной плоскости и нормали к поверхности

в точке М(1, 1, 1).





Уравнение касательной плоскости:


Уравнение нормали:


Приближенные вычисления с помощью полного дифференциала.
Пусть функция f(x, y) дифференцируема в точке (х, у). Найдем полное приращение этой функции:



Если подставить в эту формулу выражение



то получим приближенную формулу:




Пример. Вычислить приближенно значение , исходя из значения функции при x = 1, y = 2, z = 1.
Из заданного выражения определим x = 1,04 – 1 = 0,04, y = 1,99 – 2 = -0,01,

z = 1,02 – 1 = 0,02.

Найдем значение функции u(x, y, z) =

Находим частные производные:







Полный дифференциал функции u равен:




Точное значение этого выражения: 1,049275225687319176.

Частные производные высших порядков.
Если функция f(x, y) определена в некоторой области D, то ее частные производные и тоже будут определены в той же области или ее части.

Будем называть эти производные частными производными первого порядка.

Производные этих функций будут частными производными второго порядка.


Продолжая дифференцировать полученные равенства, получим частные производные более высоких порядков.


Определение. Частные производные вида и т.д. называются смешанными производными.
Теорема. Если функция f(x, y) и ее частные производные определены и непрерывны в точке М(х, у) и ее окрестности, то верно соотношение:

.

Т.е. частные производные высших порядков не зависят от порядка дифференцирования.


Аналогично определяются дифференциалы высших порядков.




…………………


Здесь n – символическая степень производной, на которую заменяется реальная степень после возведения в нее стоящего с скобках выражения.



Экстремум функции нескольких переменных.
Определение. Если для функции z = f(x, y), определенной в некоторой области, в некоторой окрестности точки М00, у0) верно неравенство

то точка М0 называется точкой максимума.


Определение. Если для функции z = f(x, y), определенной в некоторой области, в некоторой окрестности точки М00, у0) верно неравенство

то точка М0 называется точкой минимума.


Теорема. (Необходимые условия экстремума).

Если функция f(x,y) в точке (х0, у0) имеет экстремум, то в этой точке либо обе ее частные производные первого порядка равны нулю , либо хотя бы одна из них не существует.

Эту точку (х0, у0) будем называть критической точкой.
Теорема. (Достаточные условия экстремума).

Пусть в окрестности критической точки (х0, у0) функция f(x, y) имеет непрерывные частные производные до второго порядка включительно. Рассмотрим выражение:





  1. Если D(x0, y0) > 0, то в точке (х0, у0) функция f(x, y) имеет экстремум, если

- максимум, если - минимум.

  1. Если D(x0, y0) < 0, то в точке (х0, у0) функция f(x, y) не имеет экстремума

В случае, если D = 0, вывод о наличии экстремума сделать нельзя.

Условный экстремум.


Условный экстремум находится, когда переменные х и у, входящие в функцию u = f( x, y), не являются независимыми, т.е. существует некоторое соотношение

(х, у) = 0, которое называется уравнением связи.

Тогда из переменных х и у только одна будет независимой, т.к. другая может быть выражена через нее из уравнения связи.

Тогда u = f(x, y(x)).



В точках экстремума:



=0 (1)

Кроме того:



(2)

Умножим равенство (2) на число  и сложим с равенством (1).




Для выполнения этого условия во всех точках найдем неопределенный коэффициент  так, чтобы выполнялась система трех уравнений:

Полученная система уравнений является необходимыми условиями условного экстремума. Однако это условие не является достаточным. Поэтому при нахождении критических точек требуется их дополнительное исследование на экстремум.

Выражение u = f(x, y) + (x, y) называется функцией Лагранжа.

Пример. Найти экстремум функции f(x, y) = xy, если уравнение связи:

2x + 3y – 5 = 0








Таким образом, функция имеет экстремум в точке .

Использование функции Лагранжа для нахождения точек экстремума функции называется также методом множителей Лагранжа.

Выше мы рассмотрели функцию двух переменных, однако, все рассуждения относительно условного экстремума могут быть распространены на функции большего числа переменных.


Производная по направлению.

Рассмотрим функцию u(x, y, z) в точке М( x, y, z) и точке М1( x + x, y + y, z + z).

Проведем через точки М и М1 вектор . Углы наклона этого вектора к направлению координатных осей х, у, z обозначим соответственно , , . Косинусы этих углов называются направляющими косинусами вектора .

Расстояние между точками М и М1 на векторе обозначим S.




Высказанные выше предположения, проиллюстрируем на рисунке:



z
M

M1



y
x
Далее предположим, что функция u(x, y, z) непрерывна и имеет непрерывные частные производные по переменным х, у и z. Тогда правомерно записать следующее выражение:


,
где величины 1, 2, 3 – бесконечно малые при .

Из геометрических соображений очевидно:



Таким образом, приведенные выше равенства могут быть представлены следующим образом:
;


Заметим, что величина s является скалярной. Она лишь определяет направление вектора .

Из этого уравнения следует следующее определение:



Определение: Предел называется производной функции u(x, y, z) по направлению вектора в точке с координатами ( x, y, z).
Поясним значение изложенных выше равенств на примере.

Пример. Вычислить производную функции z = x2 + y2x в точке А(1, 2) по направлению вектора . В (3, 0).
Решение. Прежде всего необходимо определить координаты вектора .
=(3-1; 0-2) = (2; -2) = 2.

Далее определяем модуль этого вектора:


=

Находим частные производные функции z в общем виде:


Значения этих величин в точке А :


Для нахождения направляющих косинусов вектора производим следующие преобразования:

=

За величину принимается произвольный вектор, направленный вдоль заданного вектора, т.е. определяющего направление дифференцирования.

Отсюда получаем значения направляющих косинусов вектора :

cos = ; cos = -


Окончательно получаем: - значение производной заданной функции по направлению вектора .


Градиент.
Определение: Если в некоторой области D задана функция u = u(x, y, z) и некоторый вектор, проекции которого на координатные оси равны значениям функции u в соответствующей точке

,

то этот вектор называется градиентом функции u.



При этом говорят, что в области D задано поле градиентов.

Связь градиента с производной по направлению.
Теорема: Пусть задана функция u = u(x, y, z) и поле градиентов

.

Тогда производная по направлению некоторого вектора равняется проекции вектора gradu на вектор .

Для иллюстрации геометрического и физического смысла градиента скажем, что градиент – вектор, показывающий направление наискорейшего изменения некоторого скалярного поля u в какой- либо точке. В физике существуют такие понятия как градиент температуры, градиент давления и т.п. Т.е. направление градиента есть направление наиболее быстрого роста функции.

С точки зрения геометрического представления градиент перпендикулярен поверхности уровня функции.
Кратные интегралы.
Как известно, интегрирование является процессом суммирования. Однако суммирование может производится неоднократно, что приводит нас к понятию кратных интегралов. Рассмотрение этого вопроса начнем с рассмотрения двойных интегралов.
Двойные интегралы.
Рассмотрим на плоскости некоторую замкнутую кривую, уравнение которой

f(x, y) = 0.


y

0 x


Совокупность всех точек, лежащих внутри кривой и на самой кривой назовем замкнутой областью . Если выбрать точки области без учета точек, лежащих на кривой, область будет называется незамкнутой область .

С геометрической точки зрения  - площадь фигуры, ограниченной контуром.


Разобьем область  на n частичных областей сеткой прямых, отстоящих друг от друга по оси х на расстояние хi, а по оси у – на уi. Вообще говоря, такой порядок разбиения наобязателен, возможно разбиение области на частичные участки произвольной формы и размера.

Получаем, что площадь S делится на элементарные прямоугольники, площади которых равны Si = xi  yi .

В каждой частичной области возьмем произвольную точку Р(хi, yi) и составим интегральную сумму

где f – функция непрерывная и однозначная для всех точек области .

Если бесконечно увеличивать количество частичных областей i, тогда, очевидно, площадь каждого частичного участка Si стремится к нулю.
Определение: Если при стремлении к нулю шага разбиения области  интегральные суммы имеют конечный предел, то этот предел называется двойным интегралом от функции f(x, y) по области .

С учетом того, что Si = xi  yi получаем:

В приведенной выше записи имеются два знака , т.к. суммирование производится по двум переменным х и у.

Т.к. деление области интегрирования произвольно, также произволен и выбор точек Рi, то, считая все площади Si одинаковыми, получаем формулу:



Условия существования двойного интеграла.
Сформулируем достаточные условия существования двойного интеграла.
Теорема. Если функция f(x, y) непрерывна в замкнутой области , то двойной интеграл существует.

Теорема. Если функция f(x, y) ограничена в замкнутой области и непрерывна в ней всюду, кроме конечного числа кусочно – гладких линий, то двойной интеграл существует.

Свойства двойного интеграла.

1)
2)
3) Если  = 1 + 2, то


4) Теорема о среднем. Двойной интеграл от функции f(x, y) равен произведению значения этой функции в некоторой точке области интегрирования на площадь области интегрирования.

5) Если f(x, y)  0 в области , то .
6) Если f1(x, y)  f2(x, y), то .
7) .
Вычисление двойного интеграла.
Теорема. Если функция f(x, y) непрерывна в замкнутой области , ограниченной линиями х = a, x = b, (a < b), y = (x), y = (x), где и - непрерывные функции и

  , тогда



y y = (x)




y = (x)
a b x


Пример. Вычислить интеграл , если область  ограничена линиями: y = 0, y = x2, x = 2.

y

4



0 2 x
=

=




Теорема. Если функция f(x, y) непрерывна в замкнутой области , ограниченной линиями y = c, y = d (c < d), x = (y), x = (y) ((y) (y)), то

Пример. Вычислить интеграл , если область  ограничена линиями y = x, x = 0, y = 1, y = 2.

y


y = x


2

1


0 x


Пример. Вычислить интеграл , если область интегрирования  ограничена линиями х = 0, х = у2, у = 2.
=

=



Пример. Вычислить двойной интеграл , если область интегрирования ограничена линиями ху=1, у = , х = 2.








2.

3.

Замена переменных в двойном интеграле.
Расмотрим двойной интеграл вида , где переменная х изменяется в пределах от a до b, а переменная у – от 1(x) до 2(х).

Положим х = f(u, v); y = (u, v)


Тогда dx = ; dy = ;


т.к. при первом интегрировании переменная х принимается за постоянную, то dx = 0.
, т.е.

пожставляя это выражение в записанное выше соотношение для dy, получаем:




Выражение называется определителем Якоби или Якобианом функций f(u, v) и (u, v).
(Якоби Карл Густав Якоб – (1804-1851) – немецкий математик)
Тогда

Т.к. при первом интегрировании приведенное выше выражение для dx принимает вид ( при первом интегрировании полагаем v = const, dv = 0), то при изменении порядка интегрирования, получаем соотношение:






Двойной интеграл в полярных координатах.
Воспользуемся формулой замены переменных:

При этом известно, что

В этом случае Якобиан имеет вид:


Тогда

Здесь  - новая область значений,



Тройной интеграл.
При рассмотрении тройного инеграла не будем подробно останавливаться на всех тех теоретических выкладках, которые были детально разобраны применительно к двойному интегралу, т.к. существенных различий между ними нет.

Единственное отличие заключается в том, что при нахождении тройного интеграла интегрирование ведется не по двум, а по трем переменным, а областью интегрирования является не часть плоскости, а некоторая область в техмерном пространстве.




Суммирование производится по области v, которая ограничена некоторой поверхностью (x, y, z) = 0.

Здесь х1 и х2 – постоянные величины, у1 и у2 – могут быть некоторыми функциями от х или постоянными величинами, z1 и z2 – могут быть функциями от х и у или постоянными величинами.

Пример. Вычислить интеграл


Замена переменных в тройном интеграле.


Операция замены переменных в тройном интеграле аналогична соответсвующей операции для двойного интеграла.

Можно записать:





Наиболее часто к замене переменной в тройном интеграле прибегают с целью перейти от декартовой прямоугольной системы координат к цилиндрической или сферической системе. См. Цилиндрическая и сферическая системы координат.

Рассмотрим эти преобразования подробнее.


Цилиндрическая система координат.
z

P
z
0

 x



y


Связь координат произвольной точки Р пространства в цилиндрической системе с координатами в декартовой прямоугольной системе осуществляется по формулам:


Для представления тройного интеграла в цилиндрических координатах вычисляем Якобиан:




Итого:

Сферическая система координат.



z

P



0  x

y

Связь координат произвольной точки Р пространства в сферической системе с координатами в декартовой прямоугольной системе осуществляется по формулам:




Для представления тройного интеграла в сферических координатах вычисляем Якобиан:



Окончательно получаем:



Геометрические и физические приложения кратных интегралов.


1) Вычисление площадей в декартовых координатах.
y

y = (x)


S

y = f(x)


a b x
Площадь S, показанная на рисунке может быть вычислена с помощью двойного интеграла по формуле:


Пример. Вычислить площадь фигуры, ограниченной линиями y2 = 4x + 4;

x + y – 2 = 0.

Построим графики заданных функций:

Линии пересекаются в двух точках – (0, 2) и (8, -6). Таким образом, область интегрирования ограничена по оси Ох графиками кривых от до х = 2 – у, а по оси Оу – от –6 до 2. Тогда искомая площадь равна:

S =



2) Вычисление площадей в полярных координатах.




3) Вычисление объемов тел.

Пусть тело ограничено снизу плосткостью ху, а сверху– поверхностью z = f(x,y),

а с боков – цилиндрической поверхностью.

Такое тело называется цилиндроид.



z
z = f(x, y)
x1 y1 x2
x

y2

y

V =



Пример. Вычислить объем, ограниченный поверхностями: x2 + y2 = 1;

x + y + z =3 и плоскостью ХОY.


Пределы интегрирования: по оси ОХ:

по оси ОY: x1 = -1; x2 = 1;



4) Вычисление площади кривой поверхности.


Если поверхность задана уравнением: f(x, y, z) = 0, то площадь ее поверхности находится по формуле:


Если поверхность задана в неявном виде, т.е. уравнением z = (x, y), то площадь этой поверхности вычисляется по формуле:

5)Вычисление моментов инерции площадей плоских фигур.


Пусть площадь плоской фигуры (область ) ограничена линией, уравнение которой f(x,y) = 0. Тогда моменты инерции этой фигуры находятся по формулам:
- относительно оси Ох:

- относительно оси Оу:

- относительно начала координат: - этот момент инерции называют еще полярным моментом инерции.

6) Вычисление центров тяжести площадей плоских фигур.


Координаты центра тяжести находятся по формулам:


здесь w – поверхностная плотность (dm = wdydxмасса элемента площади).

7) Вычисление объемов тел с помощью тройного интеграла.


Если поверхность тела описывается уравнением f(x, y, z) = 0, то объем тела может быть найден по формуле:

при этом z1 и z2 – функции от х и у или постоянные, у1 и у2 – функции от х или постоянные, х1 и х2 – постоянные.

8) Координаты центра тяжести тела.

9) Моменты инерции тела относительно осей координат.

10) Моменты инерции тела относительно координатных плоскостей.

11) Момент инерции тела относительно начала координат.

В приведенных выше формулах п.п. 8 – 11 r – область вычисления интеграла по объему, w – плотность тела в точке (х, у, z), dv – элемент объема


  • в декартовых координатах: dv = dxdydz;

  • в циллиндрических координатах: dv = dzdd;

  • в сферических координатах: dv = 2sinddd.

12) Вычисление массы неоднородного тела.


Теперь плотность w – величина переменная.


Содержание КВМ Часть 1.

Содержание КВМ Часть 3.

Содержание КВМ Часть 4.